Hubble Has Accidentally Discovered Over a Thousand Asteroids

Illustration of Asteroid (Artist’s Impression). Credit: N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only is it still making astronomical discoveries after more than thirty years in operation. It is also making discoveries by accident! Thanks to an international team of citizen scientists, with the help of astronomers from the European Space Agency (ESA) and some machine learning algorithms, a new sample of over one thousand asteroids has been identified in Hubble‘s archival data. The methods used represent a new approach for finding objects in decades-old data that could be applied to other datasets as well.

Continue reading “Hubble Has Accidentally Discovered Over a Thousand Asteroids”

JWST Detects Carbon Dioxide in a Centaur for the First Time

Centaurs are small planetary bodies that orbit between Jupiter and Neptune and have baffled astronomers for sharing characteristics with both asteroids and comets. Centaurs got their name after the mythical half-horse, half-human creatures called centaurs due to their dual characteristics. Above is an artist's illustration displaying a centaur creature among asteroids (left) and comets (right). (Credit: NASA/JPL-Caltech)

A study published today in The Planetary Science Journal examines how NASA’s James Webb Space Telescope (JWST) has conducted a first-time detection of carbon dioxide in a Centaur, this one designated 39P/Oterma. A Centaur is a small planetary body that orbits between Jupiter and Neptune and frequently crosses the orbits of one or more of the gas giant planets within our solar system. While no Centaur has been imaged up-close, they typically exhibit a combination of attributes between comets and asteroids. While carbon monoxide has been detected in two known centaurs, this recent discovery could mark a turning point in how scientists understand the formation, evolution, and composition of not only Centaurs, but of the early solar system, as well.

Continue reading “JWST Detects Carbon Dioxide in a Centaur for the First Time”

Some Star Systems Create a Planet Sandwich

Artist rendition of the new “sandwiched planet formation” theory examined for this study. (Credit: University of Warwick/Mark A. Garlick; License Type: Attribution (CC BY 4.0))

A recent study presented at the National Astronomy Meeting 2023 (NAM2023) examines a newly discovered planetary formation theory that challenges previous notions on how planets are formed in the disks of gas and dust surrounding young stars, also known as protoplanetary disks. Along with being presented at NAM2023, the study has also been submitted for peer-review to the journal Monthly Notices of the Royal Astronomical Society and holds the potential to help scientists better understand not only how planets form, but how life could form on them, as well.

Continue reading “Some Star Systems Create a Planet Sandwich”

Meteorites Store a Magnetic Memory of the Early Solar System

Black Beauty, or NWA 7034, is a Martian meteorite thought to have formed at a time when the Red Planet harbored a magnetic field. Credit: C Agee, Institute of Meteoritics, UNM; NASA

Although they are thought of as rare, meteorites are actually quite common. About 40,000 tons of meteorites strike Earth every day. Most of them land in the ocean, and most are quite tiny, but they are still common enough that hobbyists all over the world find meteorites all the time. The most common place to find them is in arid regions where their coloring can stand out from the terrain. But even then a meteorite can be difficult to distinguish from terrestrial rocks.

Continue reading “Meteorites Store a Magnetic Memory of the Early Solar System”

What Would Happen if the Solar System Gained a Super-Earth?

This illustration shows the super-Earth exoplanet 55 Cancri e with its star. What would our Solar System be like if it was home to a super-Earth like this one? Credit: NASA/JPL

In this era of exoplanet discovery, astronomers have found over 5,000 confirmed exoplanets, with thousands more awaiting confirmation and many billions more waiting to be discovered. These exoplanets exist in a bewildering spectrum of sizes, compositions, orbital periods, and just about every other characteristic that can be measured.

Learning about them has also shed light on our Solar System. We used to think of it as an archetypal arrangement of planets since it’s all we had to go on. But now we know we might be the outlier because we have no Super-Earth.

Continue reading “What Would Happen if the Solar System Gained a Super-Earth?”

Don’t Bother Trying to Destroy Rubble Pile Asteroids

Detailed view of the rubble-pile asteroid 25143 Itokawa visited by the Japanese spacecraft Hayabusa in 2005. Credit: JAXA

The asteroids in our Solar System are survivors. They’ve withstood billions of years of collisions. The surviving asteroids are divided into two groups: monolithic asteroids, which are intact chunks of planetesimals, and rubble piles, which are made of up fragments of shattered primordial asteroids.

It turns out there are far more rubble pile asteroids than we thought, and that raises the difficulty of protecting Earth from asteroid strikes.

Continue reading “Don’t Bother Trying to Destroy Rubble Pile Asteroids”

The Outer Solar System Supplied a Surprising Amount of Earth’s Water

Currently exploring the Kuiper Belt, New Horizons is just one of five spacecraft to reach beyond 50 astronomical units, on its way out of the solar system and, eventually, into interstellar space. (Credit: NASA/Johns Hopkins APL/Southwest Research Institute)

In a recent study published in Science, a team of researchers at Imperial College London examined 18 meteorites containing the volatile element zinc to help determine their origin, as it has been long hypothesized that Earth’s volatiles materials, including water, were derived from asteroids closer to our home planet. However, their results potentially indicate a much different origin story.

Continue reading “The Outer Solar System Supplied a Surprising Amount of Earth’s Water”

Lucy Adds Another Asteroid to its Flyby List

This artist's illustration shows NASA's Lucy spacecraft close to one of its targets. NASA has added another asteroid, the eleventh, to Lucy's mission. Image Credit: NASA/SWRI/GSFC

In October 2021, NASA launched its ambitious Lucy mission. Its targets are asteroids, two in the main belt and eight Jupiter trojans, which orbit the Sun in the same path as Jupiter. The mission is named after early hominin fossils (Australopithecus afarensis,) and the name pays homage to the idea that asteroids are fossils from the Solar System’s early days of planet formation.

Visiting ten asteroids in one mission is the definition of ambitious, and now NASA is adding an eleventh.

Continue reading “Lucy Adds Another Asteroid to its Flyby List”

Earth’s Water is 4.5 Billion Years Old

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

The origin of Earth’s water has been an enduring mystery. There are different hypotheses and theories explaining how the water got here, and lots of evidence supporting them.

But water is ubiquitous in protoplanetary disks, and water’s origin may not be so mysterious after all.

Continue reading “Earth’s Water is 4.5 Billion Years Old”

The Oort Cloud Could Have More Rock Than Previously Believed

This artist's concept puts Solar System distances in perspective. The scale bar is in astronomical units, with each set distance beyond 1 AU representing 10 times the previous distance (logarithmic scale.) The image shows Voyager 2's location in 2018. (It also shows where the star Ross 248 will be in 40,000 years, when it will briefly be the closest star to the Sun.) Image Credit: NASA/JPL-Caltech

The Oort Cloud is a collection of icy objects in the furthest reaches of the Solar System. It contains the most distant objects in the Solar System, and instead of orbiting on a plane like the planets or forming a ring like the Kuiper Belt, it’s a vast spherical cloud centred on the Sun. It’s where comets originate, and beyond it is interstellar space.

At least that’s what scientists think; nobody’s ever seen it.

Continue reading “The Oort Cloud Could Have More Rock Than Previously Believed”