InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26, 2018. Credit: NASA/JPL-Caltech.

Yesterday, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander reached Mars after a seven months journey. NASA broadcast the landing live, showing the mission control team eagerly watching as the spacecraft entered the Martian atmosphere and began the nail-biting entry, descent and landing (EDL) process.

At exactly 11:52:29 am PST (2:52:59 pm EST) mission controllers received a signal via the Mars Cube One (MarCO) satellites that the lander had successfully touched down. About a minute later, InSight began to conduct surface operations, which involved the deployment of its solar arrays and prepping its instruments for research.

Continue reading “InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!”

You Can’t See the Great Wall of China From Space, But You Can See Their Giant Solar Farm

A view from Earth orbit of the Longyangxia Dam Solar Park in China. Credit: NASA/Landsat 8.

While the Great Wall of China is not readily visible from space (we debunked that popular myth here) there are several other human-built structures that actually can be seen from space. And that list is growing, thanks to the large solar farms being built around the world.

The solar farm with the current distinction of being the largest in the world — as of February 2017 – is the Longyangxia Dam Solar Park in China. These new images from NASA’s Landsat 8 satellite show the farm’s blue solar panels prominently standing out on the brown landscape of the western province of Qinghai, China. Reportedly, the solar farm covers 27 square kilometers (10.42 square miles), and consists of nearly 4 million solar panels.

You can see in the image below from 2013 that the farm has been growing over the years. The project has cost the amount of 6 billion yuan ($889.5 million).

The orbital view from April 16, 2013
of the Longyangxia Dam Solar Park in China. Credit: NASA/Landsat 8.

China wants to shed its title of the biggest polluter in the world and is now investing in clean, renewable energy. It has a goal of producing 110 GW of solar power and 210 GW of wind power by the year 2020. That sounds like a lot, but in a country of 1.4 billion people that relies heavily on coal, it amounts to less than 1 percent of the country’s more than 1,500 gigawatts of total power generation capacity, says Inside Climate News.

According to NASA, China is now the world’s largest producer of solar power, however Germany, Japan, and the United States produce more solar power per person.

China has another solar farm in the works that will have a capacity of 2,000 MW when it is finished.

Here’s another wider-angle view from Landsat 8 of the Longyangxia Dam and lake near the solar farm.

The Longyangxia Dam Solar Park as seen from orbit on January 5, 2017. Credit: NASA/Landsat 8.

Source: Landsat

Amazing Panorama of Western Europe at Night from Space Station

Western Europe at Night With hardware from the Earth-orbiting International Space Station appearing in the near foreground, a night time European panorama reveals city lights from Belgium and the Netherlands at bottom center. the British Isles partially obscured by solar array panels at left, the North Sea at left center, and Scandinavia at right center beneath the end effector of the Space Station Remote Manipulator System or Canadarm2. This image was taken by the station crew on Jan. 22, 2012. Credit: NASA

[/caption]

An amazing panorama revealing Western Europe’s ‘Cities at Night’ with hardware from the stations robotic ‘hand’ and solar arrays in the foreground was captured by the crew in a beautiful new image showing millions of Earth’s inhabitants from the Earth-orbiting International Space Station (ISS).

The sweeping panoramic vista shows several Western European countries starting with the British Isles partially obscured by twin solar arrays at left, the North Sea at left center, Belgium and the Netherlands (Holland) at bottom center, and the Scandinavian land mass at right center by the hand, or end effector, of the Canadian-built ISS robotic arm known as the Space Station Remote Manipulator System (SSRMS) or Canadarm2.

European Space Agency astronaut Andre Kuipers gazing at Earth from the Cupola dome of the ISS

Coincidentally European Space Agency astronaut Andre Kuipers from Holland (photo at left) is currently aboard the ISS, soaring some 400 kilometers (250 miles) overhead.

The panoramic image was taken by the ISS residents on January 22, 2012.

The Expedition 30 crew of six men currently serving aboard the ISS (photo below) hail from the US, Russia and Holland.

NASA astronaut Dan Burbank is the commander of Expedition 30 and recently snapped awesome photos of Comet Lovejoy.

“Cities at Night” – Here’s a portion of a relevant ISS Blog post from NASA astronaut Don Pettit on Jan. 27, 2012:

“Cities at night are different from their drab daytime counterparts. They present a most spectacular display that rivals a Broadway marquee. And cities around the world are different. Some show blue-green, while others show yellow-orange. Some have rectangular grids, while others look like a fractal-snapshot from Mandelbrot space.”

“Patterns in the countryside are different in Europe, North America, and South America. In space, you can see political boundaries that show up only at night. As if a beacon for humanity, Las Vegas is truly the brightest spot on Earth. Cities at night may very well be the most beautiful unintentional consequence of human activity,” writes NASA astronaut Don Pettit currently residing aboard the ISS.

Comet Lovejoy on 22 Dec. 2011 from the International Space Station. Comet Lovejoy is visible near Earth’s horizon in this nighttime image photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA/Dan Burbank
Expedition 30 Crew: Pictured on the front row are NASA astronaut Dan Burbank, commander; and Russian cosmonaut Oleg Kononenko, flight engineer. Pictured from the left (back row) are Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, all flight engineers. Photo credit: NASA and International Space Station partners

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

“Suits and Ties” Collaborate on Successful Space Station Repair

080128-exp16-bmrrm-02.thumbnail.jpg

At the end of Wednesday’s successful spacewalk to change out a faulty motor on one of the International Space Station’s solar array positioning devices, the astronauts outside the ISS and flight controllers in Houston were congratulating each other on the group effort it took to pull off this particularly tricky and potentially dangerous repair job.

“You guys looked really good to us. Thanks for making it look so easy,” Mission Control in Houston radioed up to the spacewalkers after their seven-hour and 10 minutes EVA.

“Yeah,” said ISS astronaut Dan Tani. “And we did’t even have to put on a tie.”

This spacewalk really was a collaboration between the “suits and ties” at NASA. The suits — spacesuits, that is — were worn by astronauts Tani and Peggy Whitson. The ties were sported by the engineers and astronauts in Mission Control who planned the repair and guided the spacewalkers during the entire EVA.

Tani and Whitson were thanking one tie-wearing astronaut in particular. Tom Marshburn had practiced the choreography of the spacewalk in the Neutral Buoyancy Lab in Houston, and shared his insights with the spacewalkers. Usually astronauts get to practice their own EVA’s in the enormous pool that contains a mock-up of the ISS. But the Bearing Motor Roll Ring Module on the starboard solar array quit working in December when Whitson and Tani were already on board the station. So the plan and nuances of the EVA were tested in the pool by Marshburn and former ISS resident Suni Williams and relayed up to Tani and Whitson.

The spacewalk was especially hazardous because of the risk of electrical shock from 160 volts of electricity that flows through the arrays. For safety, Whitson and Tani waited until the International Space Station was on the dark side of Earth, giving them only 33 minute increments to complete their tasks. Whitson had to squeeze inside the station’s truss girder to swap out the 250 pound (113 kilograms) garbage can-sized motor.

The new motor successfully performed a 360-degree test spin during the spacewalk. It’s power-generating capabilities were tested successfully as well.

“Yay, it works!” exclaimed Whitson as she and Tani watched the solar wing turn. “Excellent, outstanding…isn’t that cool?”

The successful repair means the station should be able to generate enough power to support the new modules that will be brought on the next shuttle missions, the European Columbus science lab, and the Japanese Kibo labratory.

“Given the complexity of this spacewalk and the risks that we had to manage … we are exceptionally pleased with how things went,” flight director Kwatsi Alibaruho said after the EVA.

In addition to the motor repair, Whitson and Tani also performed another inspection of the station’s starboard Solar Alpha Rotary Joint, a 10-ft wide gear that keeps the solar wings pointing toward the sun The SARJ is not working and is contaminated with metal shavings. The spacewalkers evaluated damage from the debris and collected samples from areas previously unseen.

Alibaruho said the new debris samples will help determine what repairs will be done, perhaps later this year. NASA hopes to launch up to five shuttle flights to the ISS this year.

Wednesday’s EVA was the final planned spacewalk of the Expedition 16 mission and the 101st dedicated to space station assembly and maintenance. The spacewalk also marked the sixth career EVA’s for both Whitson and Tani.

So, there’s just one question for Dan Tani: Which is harder — donning a 280 lb spacesuit or tying a Windsor Knot?

Original News Source: NASA TV