Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere

This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus. Credits:Image: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech

The detection of phosphine in Venus’ atmosphere was one of those quintessential moments in space science. It was an unexpected discovery, and when combined with our incomplete understanding of planetary science, and our wistful hopefulness around the discovery of life, the result was a potent mix that lit up internet headlines.

As always, some of the headlines were a bit of an over-reach. But that’s the way it goes.

At the heart of it all, there is compelling science. And the same, overarching question that keeps popping up: Are we alone?

Continue reading “Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere”

Why Lava Tubes Should be Our Top Exploration Priority on Other Worlds

Spectacular high Sun view of the Mare Tranquillitatis pit crater revealing boulders on an otherwise smooth floor. The 100 meter pit may provide access to a lunar lava tube. Image Credit: By NASA/GSFC/Arizona State University - http://photojournal.jpl.nasa.gov/catalog/PIA13518, Public Domain, https://commons.wikimedia.org/w/index.php?curid=54853313

When magma comes out of the Earth onto the surface, it flows as lava. Those lava flows are fascinating to watch, and they leave behind some unique landforms and rocks. But a lot of what’s fascinating about these flows can be hidden underground, as lava tubes.

These lava tubes are turning out to be a very desirable target for exploration on other worlds, just as they are here on Earth.

Continue reading “Why Lava Tubes Should be Our Top Exploration Priority on Other Worlds”

Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins

This artist’s concept shows a hypothetical planet covered in water around the binary star system of Kepler-35A and B. The composition of such water worlds has fascinated astronomers and astrophysicists for years. (Image by NASA/JPL-Caltech.)

We all know what water is. And what rock is. The difference is crystal clear. Well, here on Earth it is.

But on other worlds? The difference might not be so clear.

Continue reading “Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins”

Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life

Artist's impression of the exoplanet GJ 1132 b, which orbits the red dwarf star GJ 1132. Astronomers have managed to detect the atmosphere of this Earth-like planet. Credit: MPIA

We’re waiting patiently for telescopes like the James Webb Space Telescope to see first light, and one of the reasons is its ability to study the atmospheres of exoplanets. The idea is to look for biosignatures: things like oxygen and methane. But a new study says that exoplanets with hydrogen in their atmospheres are a good place to seek out alien life.

Continue reading “Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life”

A NASA Panel Says We Don’t Need to be so Careful About Infecting Other Worlds

This artist's concept depicts NASA's Mars 2020 rover exploring Mars. Credit: NASA

It’s time to update the rules. That’s the conclusion of a panel that examined NASA’s rules for planetary protection. It was smart, at the dawn of the space age, to think about how we might inadvertently pollute other worlds with Earthly microbes as we explore the Solar System. But now that we know a lot more than we did back then, the rules don’t fit.

Continue reading “A NASA Panel Says We Don’t Need to be so Careful About Infecting Other Worlds”

A Jarful of Titan Could Teach Us A Lot About Life There, and Here On Earth

A near-infrared mosaic image of Saturn's moon Titan shows the sun reflecting and glinting off of Titan's northern polar seas. Image Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
A near-infrared mosaic image of Saturn's moon Titan shows the sun reflecting and glinting off of Titan's northern polar seas. Image Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Titan is a distant, exotic, and dangerous world. It’s frigid temperatures and hydrocarbon chemistry is like nothing else in the Solar System. Now that NASA is heading there, some researchers are getting a jump on the mission by recreating Titan’s chemistry in jars.

Continue reading “A Jarful of Titan Could Teach Us A Lot About Life There, and Here On Earth”

Saltwater Similar to the Earth’s Oceans has been Seen on Europa. Another Good Reason Why We Really Need to Visit This Place

Tara Regio is the yellowish area to left of center, in this NASA Galileo image of Europa’s surface. This region of geologic chaos is the area researchers identified an abundance of sodium chloride. Image Credit: NASA/JPL/University of Arizona

Jupiter’s moon Europa is an intriguing world. It’s the smoothest body in the Solar System, and the sixth-largest moon in the Solar System, though it’s the smallest of the four Galilean moons. Most intriguing of all is Europa’s subsurface ocean and the potential for habitability.

Continue reading “Saltwater Similar to the Earth’s Oceans has been Seen on Europa. Another Good Reason Why We Really Need to Visit This Place”

A Nuclear-Powered Tunneling Robot that Could Search for Life on Europa

Artist’s rendering of the Europa “tunnelbot.” (Credit: Alexander Pawlusik, LERCIP Internship Program NASA Glenn Research Center)
Artist’s rendering of the Europa “tunnelbot.” (Credit: Alexander Pawlusik, LERCIP Internship Program NASA Glenn Research Center)

The search for life has led astronomers to the icy moons in our Solar System. Among those moons, Europa has attracted a lot of attention. Europa is Jupiter’s fourth-largest moon—and the sixth-largest in the Solar System—at 3,100 kilometres (1,900 mi) in diameter. Scientists think that its oceans could contain two or three times as much water as Earth’s oceans. The only problem is, that water is hidden under a sheet of planet-wide ice that could be between 2km and 30km (1.2 miles and 18.6 miles) thick.

A team of scientists is working hard on the problem. Andrew Dombard, associate professor of Earth and Environmental Sciences at the University of Illinois at Chicago, is part of a team that presented a possible solution. At the American Geophysical Union meeting in Washington, D.C., they presented their idea: a nuclear-powered tunneling robot that could tunnel its way through the ice and into the ocean.

Continue reading “A Nuclear-Powered Tunneling Robot that Could Search for Life on Europa”

There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity

A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).
A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).

Scientists with the Deep Carbon Observatory (DCO) are transforming our understanding of life deep inside the Earth, and maybe on other worlds. Their discoveries suggest that abundant life could exist in the sub-surface of other planets and moons, even where temperatures are extreme, and energy and nutrients are scarce. They’ve also discovered that all of the life hidden in the deep Earth contains hundreds of times more carbon than all of humanity, and that the deep biosphere is almost twice the volume of all Earth’s oceans.

“Existing models of the carbon cycle … are still a work in progress.” – Dr. Mark Lever, DCO Deep Life Community Steering Committee.”

The DCO is not a facility, but a group of over 1,000 scientist from 52 countries, including geologists, chemists, physicists, and biologists. They’re nearing the end of a 10-year project to investigate how the Deep Carbon Cycle affects Earth. 90 % of Earth’s carbon is inside the planet, and the DCO is our first effort to really understand it.

Continue reading “There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity”

Technosignatures are NASA’s New Target for Detecting Other Civilizations in Space. Wait. What’s a Technosignature?

Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45
Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45

NASA is targeting technosignatures in its renewed effort to detect alien civilizations. Congress asked NASA to re-boot its search for other civilizations a few months ago. Their first step towards that goal is the NASA Technosignatures Workshop, held in Houston from September 26th to 28th, 2018.
Continue reading “Technosignatures are NASA’s New Target for Detecting Other Civilizations in Space. Wait. What’s a Technosignature?”