Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann


Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars

Opportunity investigates Tisdale 2 rock showing indications of ancient Martian water flow. NASA's Mars Exploration Rover Opportunity used its front hazard-avoidance camera to take this picture showing the rover's arm extended toward a light-toned rock, "Tisdale 2," during Sol 2695 of the rover's work on Mars (Aug. 23, 2011). The composition of Tisdale 2 is unlike any rock studied by Opportunity since landing 7.5 years ago. It is about 12 inches (30 centimeters) tall. Credit: NASA/JPL-Caltech


Opportunity has begun a whole new mission at the vast expanse of Endeavour Crater promising a boatload of new science discoveries.

Scientists directing NASA’s Mars Opportunity rover gushed with excitement as they announced that the aging robot has discovered a rock with a composition unlike anything previously explored on the Red Planet’s surface – since she landed on the exotic Martian plains 7.5 years ago – and which offers indications that liquid water might have percolated or flowed at this spot billions of years ago.

Barely three weeks ago Opportunity arrived at the rim of the gigantic 14 mile ( 22 km) wide crater named Endeavour after an epic multi-year trek, and for the team it’s literally been like a 2nd landing on Mars – and the equivalent of the birth of a whole new mission of exploration at an entirely ‘new’ landing site.

“This is like having a brand new landing site for our veteran rover,” said Dave Lavery, program executive for NASA’s Mars Exploration Rovers at NASA Headquarters in Washington. “It is a remarkable bonus that comes from being able to rove on Mars with well-built hardware that lasts.”

Opportunity has traversed an incredible distance of 20.8 miles (33.5 km) across the Meridiani Planum region of Mars since landing on January 24, 2004 for a 3 month mission – now 30 times longer than the original warranty.

“Tisdale 2” is the name of the first rock that Opportunity drove to and investigated after reaching Endeavour crater and climbing up the rim at a low ridge dubbed ‘Cape York’.

This rock, informally named "Tisdale 2," was the first rock the NASA's Mars Rover Opportunity examined in detail on the rim of Endeavour crater. It has textures and composition unlike any rock the rover examined during its first 90 months on Mars. Its characteristics are consistent with the rock being a breccia -- a type of rock fusing together broken fragments of older rocks. Image credit: NASA/JPL-Caltech/Cornell/ASU

Endeavour’s rim is heavily eroded and discontinuous and divided into a series of segmented and beautiful mountainous ridges that offer a bonanza for science.

“This is not like anything we’ve ever seen before. So this is a new kind of rock.” said Steve Squyres, principal investigator for Opportunity at Cornell University in Ithaca, N.Y at a briefing for reporters on Sept. 1.

“It has a composition similar to some volcanic rocks, but there’s much more zinc and bromine than we’ve typically seen. We are getting confirmation that reaching Endeavour really has given us the equivalent of a second landing site for Opportunity.”

Tisdale 2 is a flat-topped rock about the size of a footstool that was blasted free by the impact that formed the tennis court sized “Odyssey” crater from which it was ejected.

“The other big take-away message, and this is to me the most interesting thing about Tisdale, is that this rock has a huge amount of zinc in it, way more zinc than we have ever seen in any Martian rock. And we are puzzling, we are thinking very hard over what that means,” Squyres speculated.

Bright veins cutting across outcrop in a section of Endeavour crater's rim called "Botany Bay" are visible in the foreground and middle distance of this view assembled from images taken by the navigation camera on Opportunity during Sol 2,681on Mars (Aug. 9, 2011). Credit: NASA/JPL-Caltech

Squyres said that high levels of zinc and bromine on Earth are often associated with rocks in contact with flowing water and thus experiencing hydrothermal activity and that the impact is the source of the water.

“When you find rocks on Earth that are rich in zinc, they typically form in a place where you had some kind of hydrothermal activity going on, in other words, you have water that gets heated up and it flows through the rocks and it can dissolve out and it can get redeposited in various places,” Squyres explained.

“So this is a clue, not definitive proof yet, but this is a clue that we may be dealing with a hydrothermal system here, we may be dealing with a situation where water has percolated or flowed or somehow moved through these rocks, maybe as vapor, maybe as liquid, don’t know yet.”

“But it has enhanced the zinc concentration in this rock to levels far in excess of anything we’ve ever seen on Mars before. So that’s the beginning of what we expect is going to be a long and very interesting story about these rocks.”

Endeavour crater was chosen three years ago as the long term destination for Opportunity because it may hold clues to a time billions and billions of years ago when Mars was warmer and wetter and harbored an environment that was far more conducive to the formation of life beyond Earth.

Endeavour Crater Panorama from Opportunity, Sol 2681, August 2011
Opportunity arrived at the rim of Endeavour on Sol 2681, August 9, 2011 and climbed up the ridge known as Cape York. Odyssey crater is visible at left. The rover has driven to Tisdale 2 rock at the outskirts of Odyssey to investigate the ejecta blocks which may hold clues to ancient water flow on Mars. Distant portions of Endeavour’s rim - as far as 13 miles away – visible in the background. The rover will likely drive eventually to the Cape Tribulation rim segment at right which holds a mother lode of clay minerals. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2681.
Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

Signatures of clay minerals, or phyllosilicates, were detected at several spots at Endeavour’s western rim by observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“The motherlode of clay minerals is on Cape Tribulation. The exposure extends all the way to the top, mainly on the inboard side,” said Ray Arvidson, the rover’s deputy principal investigator at Washington University in St. Louis.

Opportunity Traverse Map: 2004 to 2011. The yellow line on this map shows where NASA's Mars Rover Opportunity has driven from the place where it landed in January 2004 -- inside Eagle crater, at the upper left end of the track -- to a point approaching the rim of Endeavour crater. The map traces the route through the 2,670th Martian day, or sol, of Opportunity's work on Mars (July 29, 2011). Image credit: NASA/JPL-Caltech/MSSS/NMMNHS.

Phyllosilicates are clay minerals that form in the presence of pH neutral water and which are far more hospitable to the possible genesis of life compared to the sulfate rich rocks studied in the more highly acidic aqueous environments examined by both the Opportunity and Spirit rovers thus far.

“We can get up the side of Cape Tribulation,” said Arvidson. It’s not unlike Husband Hill for Spirit. We need to finish up first at Cape York, get through the martian winter and then start working our way south along Solander Point.

The general plan is that Opportunity will probably spend the next several months exploring the Cape York region for before going elsewhere. “Just from Tisdale 2 we know that we have something really new and different here,” said Squyres.

“On the final traverses to Cape York, we saw ragged outcrops at Botany Bay unlike anything Opportunity has seen so far, and a bench around the edge of Cape York looks like sedimentary rock that’s been cut and filled with veins of material possibly delivered by water,” said Arvidson. “We made an explicit decision to examine ancient rocks of Cape York first.”

So far at least the terrain at Cape York looks safe for driving with good prospects for mobility.

Opportunity approaches Tisdale 2 rock at Endeavour Crater rim
Opportunity Mars rover climbed up the ridge known as Cape York and drove to the flat topped Tisdale 2 rock at upper left to analyze it with the science instruments on the robotic arm. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2685, August 2011.
Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

“The good news is that, as predicted, we have hard packed soils like the plains at Gusev that Spirit saw before getting to the Columbia Hills,” said Arvidson. “The wheel tracks at Cape York are very, very shallow. So if anything we will have some skid going downhill the slopes of 5 to 10 degrees on the inboard side which we can correct for.”

“We are always on the lookout for sand traps. We are particularly sensitized to that after the Spirit situation. So far it’s clear sailing ahead.”

Opportunity will then likely head southwards towards an area dubbed “Botany Bay” and eventually drive some 1.5 km further to the next ridge named Cape Tribulation and hopefully scale the slopes in an uphill search for that mother lode of phyllosilicates.

“My strong hope – if the rover lasts that long – is that we will have a vehicle that is capable of climbing Cape Tribulation just as we climbed Husband Hill with Spirit. So it’s obvious to try if the rover is capable, otherwise we would try something simpler. But even if we lose a wheel we still have a vehicle capable of a lot of science,” Squyres emphasized. “Then we would stick to lower ground and more gently sloping stuff.”

“The clear intention as we finish up at Cape York, and look at what to do next, is that we are going to work our way south. We will focus along the crater’s rim. We will work south along the rim of Endeavour unless some discovery unexpectedly causes us to do something else.”

“We will go where the science takes us !” Squyres stated.

Opportunity is in generally good health but the rover is showing signs of aging.

“All in all, we have a very senior rover that’s showing her age, she has some arthritis and some other issues but generally, she’s in good health, she’s sleeping well at night, her cholesterol levels are excellent and so we look forward to productive scientific exploration for the period ahead,” said John Callas, project manager for Opportunity at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“This has the potential to be the most revealing destination ever explored by Opportunity,” said Lavery. “This region is substantially different than anything we’ve seen before. We’re looking at this next phase of Opportunity’s exploration as a whole new mission, entering an area that is significantly different in the geologic context than anything we’ve seen with the rovers.”

This image taken from orbit shows the path of the path driven by NASA's Mars Exploration Rover Opportunity in the weeks around the rover's arrival at the rim of Endeavour crater. The sol number (number of Martian days since the rover landed on Mars) are indicated along the route. Sol 2674 corresponds to Aug. 2, 2011; Sol 2688 corresponds to Aug. 16, 2011. Image credit: NASA/JPL-Caltech/University of Arizona
Elevated Zinc and Bromine in Tisdale 2 Rock on Endeavour Rim. This graphic presents information gained by examining part of the Martian rock called "Tisdale 2" with the alpha particle X-ray spectrometer on Mars rover Opportunity and comparing the composition measured there with compositions of other targets examined by Opportunity and its rover twin, Spirit. The comparison targets are soil in Gusev crater, examined by Spirit; the relatively fresh basaltic rock Adirondack, examined by Spirit; the stony meteorite Marquette examined by Opportunity; and Gibraltar, an example of sulfate-rich bedrock examined by Opportunity. The target area on Tisdale 2, called "Timmins 1," contains elevated levels of bromine (Br), zinc (Zn), phosphorus (P), sulfur (S) and chlorine (Cl) relative to the non-sulfate-rich comparison rocks, and high levels of zinc and phosphorus relative to Gibraltar. Credit: NASA/JPL-Caltech/Cornell/Max Planck Institute/University of Guelph

Read Ken’s continuing features about Mars starting here
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes
Opportunity Rover Completes Exploration of fascinating Santa Maria Crater
Opportunity Surpasses 30 KM Driving and Snaps Skylab Crater in 3 D

Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook

Endeavour Crater Panorama from Opportunity, Sol 2681, August 2011. NASA’s Opportunity Mars rover arrived at the rim of huge Endeavour crater on Sol 2681, August 9, 2011 and climbed up the ridge known as Cape York. A small crater dubbed ‘Odyssey’ is visible in the foreground at left. The rover has now driven to the outskirts of Odyssey to investigate the ejecta blocks which may stem from an ancient and wetter Martian Epoch. Opportunity snapped this soaring panorama showing distant portions of Endeavour’s rim - as far as 13 miles away - in the background. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2681. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

[/caption]NASA’s Mars Opportunity rover has finally arrived at the huge Martian crater named Endeavour that simultaneously offers a mother lode of superb scenery and potentially the “Mother of all Martian Science”. The epic journey took nearly three years.

The intrepid robogirl is now climbing uphill on a Scientific quest that may well produce bountiful results towards the most important findings ever related to the search for life on Mars. Opportunity arrived at the western rim of the 13 mile (21 km) wide Endeavour crater on the 2681st Sol , or Martian day, of a mission only warrantied to last 90 Sols.

See our new Opportunity panoramic mosaics (Marco Di Lorenzo & Ken Kremer) illustrating the magnificent scenery and science targets now at hand on the surface of the Red Planet, thanks to the diligent work of the science and engineering teams who created the twin Mars Exploration Rover (MER) vehicles – Spirit & Opportunity.

Opportunity made landfall at Endeavour at a ridge of the discontinuous crater rim named Cape York and at a spot dubbed “Spirit Point” – in honor or her twin sister Spirit which stopped communicating with Earth about a year ago following more than six years of active science duty. See traverse map mosaic.

The martian robot quickly started driving northwards up the gnetle slopes of Cape York and has reached a small crater named “Odyssey” – the first science target, Dr. Matt Golembek told Universe Today. Golembek is a Senior Research Scientist with the Mars Exploration Program at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“Large ejecta blocks are clearly visible on the rim of Odyssey crater,” said Golembek. The crater is about 66 feet (20 m) in diameter.

Odyssey is a small impact crater of interest to the team because it features exposed material from Mars ancient Noachian era that was ejected when the crater was excavated long ago. Opportunity carefully drove over several days to one of those ejecta blocks – a flat topped rock nicknamed Tisdale 2.

Endeavour Crater Panorama from Opportunity, Sol 2685, August 2011
NASA’s Opportunity Mars rover arrived at the rim of huge Endeavour crater on Sol 2681, August 9, 2011 and is climbed up the ridge known as Cape York. She drove to the flat topped Tisdale 2 rock at upper left to analyze it with the science instruments on the robotic arm. Opportunity snapped this soaring panorama showing distant portions of Endeavour’s rim - as far as 13 miles away - in the background. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2685.
Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

“Opportunity is at a block of Odyssey crater ejecta called Tisdale 2 and the rock appears different from anything else we have seen,” Golembek explained.

Starting on Sol 2688 (Aug. 16) the rover began a science campaign time to investigate the rock with the instruments at the terminus of its robotic arm or IDD (Instrument Deployment Device) that will continue for some period of time.

“We are about to start an IDD campaign,” Golembek stated.

The Long Journey of Opportunity form Eagle to Endeavour Crater (2004 to 2011).
This map mosaic shows Opportunity’s epic trek of nearly eight years from landing at Eagle crater on January 24, 2004 to arrival at the giant 13 mile (21 km) diameter Endeavour crater in August 2011. Opportunity arrived the Endeavour’s rim and then drove up a ridge named Cape York. The photomosaic at top right show the outlook from Cape York on Sol 2685 (August 2011).
Mosaic Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo

The team reports that the soil at Cape York is also of a different texture than any that Opportunity has seen so far on her incredible 20 mile (33 km) trek across the Meridiani Planum region of Mars. So far they haven’t seen of the iron-rich concretions, nicknamed “blueberries,” which have been plentiful on the surface along the way at numerous locations Opportunity has stopped at and investigated over the past 90 months. Initially the prime mission was projected to last 3 months – the remainder has been a huge bonus.

The science team is directing Opportunity to hunt for clay minerals, also known as phyllosilicates, that could unlock the secrets of an ancient Epoch on Mars stretching back billions and billions of years ago that was far wetter and very likely more habitable and welcoming to life’s genesis.

Phyllosilicate minerals form in neutral water that would be vastly more friendly to any potential Martian life forms – if they ever existed in the past or present. Signatures for phyllosilicates were detected by the CRISM instrument aboard NASA’s powerful Mars Reconnaissance Orbiter (MRO) spacecraft circling Mars

Flat-topped Tisdale 2 rock. Credit: NASA/JPL-Caltech
'Ridout' Rock on Rim of Odyssey Crater. Opportunity looked across small Odyssey crater on the rim of much larger Endeavour crater to capture this raw image from its panoramic camera during the rover's 2,685th Martian day, or sol, of work on Mars (Aug. 13, 2011). From a position south of Odyssey, this view is dominated by a rock informally named "Ridout" on the northeastern rim of Odyssey. The rock is roughly the same size as the rover, which is 4.9 feet (1.5 meters) long. Credit: NASA/JPL-Caltech/Cornell/ASU

Read my continuing features about Mars starting here
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes
Opportunity Rover Completes Exploration of fascinating Santa Maria Crater
Opportunity Surpasses 30 KM Driving and Snaps Skylab Crater in 3 D

Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA's Mars Science Laboratory Curiosity rover. Curiosity is a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of. Credit: NASA/JPL-Caltech. New NASA High Resolution Curiosity Animations below


NASA’s next Mars rover, the Curiosity Mars Science Laboratory, will soon embark on a quantum leap in humankind’s scientific exploration of the Martian surface -the most Earthlike planet in our Solar System.

To get a birds eye understanding of Curiosity’s magnificent capabilities, check out the dramatic new high resolution animation below which depicts NASA’s next Mars rover traversing tantalizing terrain for clues to whether Martian microbial life may have existed, evolved and been sustained in past or present times.

The new action packed animation is 11 minutes in length. It depicts sequences starting with Earth departure, smashing through the Martian atmosphere, the nail biting terror of the never before used rocket-backpack sky crane landing system and then progressing through the assorted science instrument capabilities that Curiosity will bring to bear during its minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters.

Curiosity is equipped with 10 science instruments. The three meter long robot is five times the weight of any previous Mars rover.

Those who closely follow the adventures of NASA’s Spirit and Opportunity rovers, like myself, will quickly recognize several of the panoramic scenes which have been included to give a realistic feeling of vistas to expect from the car sized Curiosity rover.

Here is a shorter 4 minute animation with expert narration

Along the way you’ll experience Curiosity zapping rocks with a laser, deftly maneuvering her robotic arm and camera mast and retrieving and analyzing Martian soil samples.

“It is a treat for the 2,000 or more people who have worked on the Mars Science Laboratory during the past eight years to watch these action scenes of the hardware the project has developed and assembled,” said Mars Science Laboratory Project Manager Pete Theisinger at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a NASA statement. “The animation also provides an exciting view of this mission for any fan of adventure and exploration.”

Curiosity - The Next Mars Rover analyzes Martian rocks
Curiosity rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. Credit: NASA/JPL-Caltech

Curiosity was flown this week from her birthplace at NASA’s Jet Propulsion Laboratory in California to her future launch site in Florida aboard a C-17 military cargo transport aircraft.

She arrived at the Shuttle Landing Facility (SLF) at the Kennedy Space Center on June 22. The SLF is the same landing strip where I watched the STS-135 crew arrive for NASA’s final shuttle mission just days earlier days for their final launch countdown training.

NASA has scheduled Curiosity to blast off for the red planet on Nov. 25, 2011 from Cape Canaveral Air Force Station aboard an Atlas V rocket. Curiosity will touchdown in August 2012 at a landing site that will be announced soon by Ed Weiler, NASA Associate Administrator for the Science Mission Directorate in Washington, D.C.

Curiosity rover traverses new Martian terrain in search of habitats for microbial life. Credit: NASA/JPL-Caltech

Read my prior features about Curiosity
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth
Curiosity Mars Rover Almost Complete
Curiosity Rover Testing in Harsh Mars-like Environment

Test Roving NASA’s Curiosity on Earth

Mars Rover Curiosity, Front View during mobility testing on June 3, 2011. Credit: NASA/JPL-Caltech


Just over a year from now, NASA’s Curiosity rover should be driving across fascinating new landscapes on the surface of Mars if all goes well. Curiosity is NASA next Mars rover – the Mars Science Laboratory – and is targeted to launch during a three week window that extends from Nov. 25 to Dec. 18, 2011 from Cape Canaveral Air Force Station, Fla..

At NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., engineering specialists have been putting Curiosity through the final phase of mobility tests to check out the driving capability, robotic arm movements and sample collection maneuvers that the robot will carry out while traversing the landing site after plummeting through the Martian atmosphere in August 2012.

Take a good look at this album of newly released images from JPL showing Curiosity from the front and sides, maneuvering all six wheels, climbing obstacles and flexing the robotic arm and turret for science sample collection activities as it will do while exploring the red planet’s surface.

Mars Rover Curiosity's Arm Held High

Curiosity is following in the footsteps of the legendary Spirit and Opportunity rovers which landed on opposite side of Mars in 2004.

“The rover and descent stage will be delivered to the Payload Hazardous Servicing Facility at the Kennedy Space Center (KSC) later in June,” Guy Webster, public affairs officer at JPL, told me. An Air Force C-17 transport plane has already delivered the heat shield, back shell and cruise stage on May 12, 2011.

“The testing remaining in California is with engineering models and many operational readiness tests,” Webster elaborated. “Lots of testing remains to be done on the flight system at KSC, including checkouts after shipping, a system test, a fit check with the RTG, tests during final stacking.”

Mars Rover Curiosity, Turning in Place during mobility testin. Credit: NASA/JPL-Caltech

The three meter long rover will explore new terrain that will hopefully provide clues as to whether Mars harbored environmental conditions that may have been favorable to the formation of microbial life beyond Earth and preserved evidence of whether left ever existed in the past and continued through dramatic alterations in Mars history.

NASA is evaluating a list of four potential landing sites that will offer the highest science return and the best chance of finding a potentially habitable zone in a previously unexplored site on the red planet.

Mars Rover Curiosity Raising Turret

Mars Rover Curiosity, Left Side View
Mars Rover Curiosity with Wheel on Ramp
Mars Rover Curiosity, Right Side View

Curiosity Mars Rover Almost Complete

Curiosity Mars Rover almost complete at NASA’s Jet Propulsion Laboratory – Side View. The rover for NASA's Mars Science Laboratory mission, named Curiosity, is about 3 meters (10 feet) long, not counting the additional length that the rover's arm can be extended forward. The front of the rover is on the left in this side view. The arm is partially raised but not extended. Rising from the rover deck just behind the front wheels is the remote sensing mast. Credit: NASA/JPL-Caltech


NASA’s massive ‘Curiosity’ rover is almost ready to begin the first leg of its long trek to the surface of the Red Planet. Engineers at NASA’s Jet Propulsion Laboratory in California are nearly finished with assembling and testing all the components of the Mars Science Laboratory (MSL) mission (see photos above and below).

The MSL team plans to ship Curiosity as well as the cruise stage, descent stage and back shell to the Kennedy Space Center (KSC) in May and June. After arriving at KSC, all the pieces will be integrated together and tested during final assembly in a clean room. The rover will then be installed inside a 5 meter diameter nose cone, shipped the short distance to Cape Canaveral and then bolted atop an Atlas V rocket (photo below).

Top of Mars Rover Curiosity's Remote Sensing Mast.
The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover's surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities. Credit: NASA/JPL-Caltech

The launch window for Curiosity extends from Nov. 25 to Dec. 18, 2011. The first stage of the powerful Atlas V rocket will be augmented with four solid rocket boosters. The Atlas V has previously launched two planetary missions; the Mars Reconnaissance Orbiter (MRO) and the New Horizons mission to Pluto.

Take a long gander at the 3 meter long rover because its appearance is now very much how it will look while it’s roving along intriguing martian landscapes for at least two earth years after landing in August 2012.

NASA Mars Rover Curiosity at JPL, View from Front Left Corner.
Support equipment is holding the Mars rover Curiosity slightly off the floor. When the wheels are on the ground, the top of the rover's mast is about 2.2 meters (7 feet) above ground level. Credit: NASA/JPL-Caltech

The mini-Cooper sized Curiosity rover is equipped with 10 science instruments to investigate Martian soil and rock samples in far greater detail than ever before. Curiosity’s science payload weighs ten times more than any prior Mars rover mission.

The goal is to search for clues to environmental conditions favorable for microbial life and for preserving evidence about whether Martian life ever existed in the past or today. NASA is scrutinizing a list of four potential landing sites for the best chance of finding a habitable zone.

Arm and Mast of Curiosity Mars Rover.
Curiosity's arm and remote sensing mast carry science instruments and other tools for the mission. This image, taken April 4, 2011, inside the Spacecraft Assembly Facility at JPL shows the arm on the left and the mast just right of center. Credit: NASA/JPL-Caltech
Atlas V rocket at pad 41 at Cape Canaveral Air Force Station.
An Atlas V rocket similar to this one with a 5 meter diameter nose cone – but with 4 solid rocket boosters added - will launch Curiosity to Mars in late 2011. Credit: Ken Kremer
Atlas V launch vehicle will blast Curiosity to Mars

“Astrobiology” Parody Video of Ke$ha’s “We R Who We R”

Wanna get turned on by … “Astrobiology” ?? Are we alone in the universe?

Well check out just this newly-released music video parody of Ke$ha’s hit song “We R Who We R” – “Astrobiology.”

Suspend your disbelief. It’s different. It’s cool. And it’s very clever.

And .. It’s even better the second time around when you listen to the lyrics more closely … combined with the shocking video .. Featuring beautiful maidens and alien dolls galore. Continue reading ““Astrobiology” Parody Video of Ke$ha’s “We R Who We R””

If the Earth is Rare, We May Not Hear from ET

Earth - Moon System
Image Credit: NASA

If civilization-forming intelligent life is rare in our Milky Way galaxy, chances are we won’t hear from ET before the Sun goes red giant, in about five billion years’ time; however, if we do hear from ET before then, we’ll have lots of nice chats before the Earth is sterilized.

That’s the conclusion from a recent study of Ward and Brownlee’s Rare Earth hypothesis by Duncan Forgan and Ken Rice, in which they made a toy galaxy, simulating the real one we live in, and ran it 30 times. In their toy galaxy, intelligent life formed on Earth-like planets only, just as it does in the Rare Earth hypothesis.

While the Forgan and Rice simulations are still limited and somewhat unrealistic, they give a better handle on SETI’s chances for success than either the Drake equation or Fermi’s “Where are they?”

“The Drake equation itself does suffer from some key weaknesses: it relies strongly on mean estimations of variables such as the star formation rate; it is unable to incorporate the effects of the physico-chemical history of the galaxy, or the time-dependence of its terms,” Forgan says, “Indeed, it is criticized for its polarizing effect on “contact optimists” and “contact pessimists”, who ascribe very different values to the parameters, and return values of the number of galactic civilizations who can communicate with Earth between a hundred-thousandth and a million (!)”

Building on the work of Vukotic and Cirkovic, Forgan developed a Monte Carlo-based simulation of our galaxy; as inputs, he used the best estimates of actual astrophysical parameters such as the star formation rate, initial mass function, a star’s time spent on the main sequence, likelihood of death from the skies, etc. For several key inputs however, “the model goes beyond relatively well-constrained parameters, and becomes hypothesis,” Forgan explains, “In essence, the method generates a Galaxy of a billion stars, each with their own stellar properties (mass, luminosity, location in the Galaxy, etc.) randomly selected from observed statistical distributions. Planetary systems are then generated for these stars in a similar manner, and life is allowed to evolve in these planets according to some hypothesis of origin. The end result is a mock Galaxy which is statistically representative of the Milky Way. To quantify random sampling errors, this process is repeated many times: this allows an estimation of the sample mean and sample standard deviation of the output variables obtained.”

Forgan simulated the Rare Earth hypothesis by allowing animal life – the only kind of life from which intelligent civilizations can arise – to form only if homeworld’s mass is between a half and two Earths, if homesun’s mass is between a half and 1.5 times our Sun’s, homeworld has at least one moon (for tides and axial stability), and if homesun has at least one planet of mass at least ten times that of Earth, in an outer orbit (to cut down on death from the skies due to asteroids and comets).

The good news for SETI is that a galaxy like ours should host hundreds of intelligent civilizations (though, somewhat surprisingly, there is no galactic goldilocks zone); the bad news is that during the time such a civilization could communicate with an ET – between when it becomes technologically advanced enough and when it is wiped out by homesun going red giant – there are, in most simulations, no other such civilizations (or if there are, they are too far away) … we, or ET, would be alone.

But it’s not all bad news; if we are not alone, then once contact is established, we will have many phone calls with ET.

To be sure, this is but a work-in-progress. “Numerical modeling of this type is generally a shadow of the entity it attempts to model, in this case the Milky Way and its constituent stars, planets and other objects,” Forgan and Rice say; several improvements are already being worked on.

Sources: “A numerical testbed for hypotheses of extraterrestrial life and intelligence” (Forgan D., 2009, International Journal of Astrobiology, 8, 121), and “Numerical Testing of The Rare Earth Hypothesis using Monte Carlo Realisation Techniques” (arXiv:1001:1680); this too will be published in IJA, likely in April.

Mars 2016 Methane Orbiter: Searching for Signs of Life

Elements of the ESA-NASA ExoMars program 2016-2018. Credit: ESA


The new joint Mars exploration program of NASA and ESA is quickly pushing forward to implement an agreed upon framework to construct an ambitious new generation of red planet orbiters and landers starting with the 2016 and 2018 launch windows.

The European-led ExoMars Trace Gas Mission Orbiter (TGM) has been selected as the first spacecraft of the joint initiative and is set to launch in January 2016 aboard a NASA supplied Atlas 5 rocket for a 9 month cruise to Mars. The purpose is to study trace gases in the martian atmosphere, in particular the sources and concentration of methane which has significant biological implications. Variable amounts of methane have been detected by a martian orbiter and ground based telescopes on earth. The orbiter will likely be accompanied by a small static lander provided by ESA and dubbed the Entry, Descent and Landing Demonstrator Module (EDM).

The NASA Mars Program is shifting its science strategy to coincide with the new joint venture with ESA and also to build upon recent discoveries from the current international fleet of martian orbiters and surface explorers Spirit, Opportunity and Phoenix (see my earlier mars mosaics). Doug McCuiston, NASA’s director of Mars Exploration at NASA HQ told me in an interview that, “NASA is progressing quickly from ‘Follow the Water’ through assessing habitability and on to a theme of ‘Seeking the Signs of Life’. Looking directly for life is probably a needle in the haystack, but the signatures of past or present life may be more wide spread through organics, methane sources, etc”.

NASA and ESA will issue an “Announcement of Opportunity for the orbiter in January 2010” soliciting proposals for a suite of science instruments according to McCuiston. “The science instruments will be competitively selected. They are open to participation by US scientists who can also serve as the Principal Investigators (PI’s)”. Proposals are due in 3 months and will be jointly evaluated by NASA and ESA. Instrument selections are targeted for announcement in July 2010 and the entire cost of the NASA funded instruments is cost capped at $100 million.

Mars Trace Gas Mission orbiter slated for 2016 launch is the first spacecraft in the new ESA & NASA Mars Exploration Joint Initiative. Credit: NASA ESA
Mars Trace Gas Mission orbiter slated for 2016 launch is the first spacecraft in the new ESA & NASA Mars Exploration Joint Initiative. Credit: NASA ESA

“The 2016 mission must still be formally approved by NASA after a Preliminary Design Review, which will occur either in late 2010 or early 2011. Funding until then is covered in the Mars Program’s Next Decade wedge, where all new-start missions reside until approved, or not, by the Agency”, McCuiston told me. ESA’s Council of Ministers just gave the “green light” and formally approved an initial budget of 850 million euros ($1.2 Billion) to start implementing their ExoMars program for the 2016 and 2018 missions on 17 December at ESA Headquarters in Paris, France. Another 150 million euros will be requested within two years to complete the funding requirement for both missions.

ESA has had to repeatedly delay its own ExoMars spacecraft program since it was announced several years ago due to growing complexity, insufficient budgets and technical challenges resulting in a de-scoping of the science objectives and a reduction in weight of the landed science payload. The ExoMars rover was originally scheduled to launch in 2009 and is now set for 2018 as part of the new architecture.

The Trace Gas orbiter combines elements of ESA’s earlier proposed ExoMars orbiter and NASA’s proposed Mars Science Orbiter. As currently envisioned the spacecraft will have a mass of about 1100 kg and carry a roughly 115 kg science payload, the minimum deemed necessary to accomplish its goals. The instruments must be highly sensitive in order to be capable of detecting the identity and extremely low concentration of atmospheric trace gases, characterizing the spatial and temporal variation of methane and other important species, locating the source origin of the trace gases and determining if they are caused by biologic or geologic processes. Current photochemical models cannot explain the presence of methane in the martain atmosphere nor its rapid appearance and destruction in space, time or quantity.

An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 is projected to launch the 2016 Mars orbiter. Credit: Ken Kremer
An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 is projected to launch the 2016 Mars orbiter. Credit: Ken Kremer

Among the instruments planned are a trace gas detector and mapper, a thermal infrared imager and both a wide angle camera and a high resolution stereo color camera (1 – 2 meter resolution). “All the data will be jointly shared and will comply with NASA’s policies on fully open access and posting into the Planetary Data System”, said McCuiston.
Another key objective of the orbiter will be to establish a data relay capability for all surface missions up to 2022, starting with 2016 lander and two rovers slotted for 2018. This timeframe could potentially coincide with Mars Sample Return missions, a long sought goal of many scientists.

If the budget allows, ESA plans to piggyback a small companion lander (EDM) which would test critical technologies for future missions. McCuiston informed me that, “The objective of this ESA Technology Demonstrator is validating the ability to land moderate payloads, so the landing site selection will not be science-driven. So expect something like Meridiani or Gusev—large, flat and safe. NASA will assist ESA engineering as requested, and within ITAR constraints.” EDM will use parachutes, radar and clusters of pulsing liquid propulsion thrusters to land.

“ESA plans a competitive call for instruments on their 3-4 kg payload”, McCuiston explained. “The Announcement of Opportunity will be open to US proposers as well so there may be some US PI’s. ESA wants a camera to ‘prove’ they got to the ground. Otherwise there is no significant role planned for NASA in the EDM”.

The lander would likely function as a weather station and be relatively short lived, perhaps 8 Sols or martian days, depending on the capacity of the batteries. ESA is not including a long term power source, such as from solar arrays, so the surface science will thus be limited in duration.

The orbiter and lander would separate upon arrival at Mars. The orbiter will use a series of aerobraking maneuvers to eventually settle into a 400 km high circular science orbit inclined at about 74 degrees.

The joint Mars architecture was formally agreed upon last summer at a bilateral meeting between Ed Weiler (NASA) and David Southwood (ESA) in Plymouth, UK. Weiler is NASA’s Associate Administrator for the Science Mission Directorate and Southwood is ESA’s Director of Science and Robotic Exploration. They signed an agreement creating the Mars Exploration Joint Initiative (MEJI) which essentially weds the Mars programs of NASA and ESA and delineates their respective program responsibilities and goals.

“The key to moving forward on Mars exploration is international collaboration with Europe”, Weiler said to me in an interview. “We don’t have enough money to do these missions separately. The easy things have been done and the new ones are more complex and expensive. Cost overruns on Mars Science Lab (MSL) have created budgetary problems for future mars missions”. To pay for the MSL overrun, funds have to be taken from future mars budget allocations from fiscal years 2010 to 2014.

“2016 is a logical starting point to work together. NASA can have a 2016 mission if we work with Europe but not if we work alone. We can do so much more by working together since we both have the same objectives scientifically and want to carry out the same types of mission”. Weiler and Southwood instructed their respective science teams to meet and lay out a realistic and scientifically justifiable approach. Weiler explained to me that his goal and hope was to reinstate an exciting Mars architecture with new spacecraft launching at every opportunity which occurs every 26 months and which advance the state of the art for science. “It’s very important to demonstrate a critical new technology on each succeeding mission”.

More on the 2018 mission plan and beyond in a follow up report.

Mars from orbit.  Valles Marineris and Volcanic region
Mars from orbit. Valles Marineris and Volcanic region