Phobos-Grunt: The Mission Poster

<>. Mission Poster for the Russian Phobos-Grunt soil sample return spacecraft set to launch to Mars and its moon Phobos in November 2011. Phobos-Grunt consistes Credit: Roskosmos - Russian Federal Space Agency

[/caption]

Russia is marking the upcoming blastoff of their dauntingly complex Phobos-Grunt sample return mission to the Martian moon Phobos with the release of a quite cool looking mission poster – see above. Phobos-Grunt translates as Phobos-Soil and is due to liftoff on or about November 7, 2011 from the Baikonur Cosmodrome atop a Zenit rocket.

The holy grail of Mars exploration has long been a sample return mission. But with severe cutbacks to NASA’s budget that goal is realistically more than a decade away. That’s why Phobos- Grunt is so exciting from a scientific standpoint.

Phobos-Grunt Orbiter/Lander
Russia's Phobos-Grunt is designed to land on Mars' moon Phobos, collect soil samples and return them to Earth for study. The lander will also carry scientific instrumetns to study Phobos and its environment. It will travel to Mars together with Yinghuo-1, China's first mission to the Red Planet. Credit: NPO Lavochkin

Phobos-Grunt Robotic sampling arm. Credit: Roskosmos

If successful, this audacious probe will retrieve about 200 grams of soil from the diminutive moon Phobos and accomplish the round trip in three years time by August 2014. Scientists speculate that martian dust may coat portions of Phobos and could possibly be mixed in with any returned samples.

Included here are more photos and graphics of the Phobos-Grunt spacecraft which is equipped with two robotic arms and a sampling device to transfer regolith and rocks to the Earth return vehicle and an on board array of some 15 science instruments, including lasers, spectrometers, cameras and a microscope. Readers please feel free to help with Russian translations.

Phobos-Grunt Model
This is a full-scale mockup of Russia's Phobos-Grunt. The spacecraft will collect samples of soil on Mar's moon Phobos and to bring the samples back to Earth for detailed study. Credit: CNES

Phobos-Grunt is the first of Earth’s two missions launching to the Red Planet in 2011. NASA’s Curiosity Mars Science Laboratory is due to lift off on Nov. 25, 2011 from Cape Canaveral, Florida.

Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Russian Phobos-Grunt spacecraft set to Launch in November 2011.The flight version of the Phobos-Grunt spacecraft minus its main solar panels is being lowered into a vacuum chamber at NITs RKP test facility in Peresvet, north of Moscow, for thermal, vacuum and electric tests around beginning of June 2011. Credit: NPO Lavochkin

[/caption]

In just over 3 weeks’ time, Russia plans to launch a bold mission to Mars whose objective, if successful , is to land on the Martian Moon Phobos and return a cargo of precious soil samples back to Earth about three years later.

The purpose is to determine the origin and evolution of Phobos and how that relates to Mars and the evolution of the solar system.

Liftoff of the Phobos-Grunt space probe will end a nearly two decade long hiatus in Russia’s exploration of the Red Planet following the failed Mars 96 mission and is currently scheduled to head to space just weeks prior to this year’s other Mars mission – namely NASA’s next Mars rover, the Curiosity Mars Science Laboratory (MSL).

Blastoff of Phobos-Grunt may come as early as around Nov. 5 to Nov. 8 atop a Russian Zenit 3-F rocket from the Baikonur Cosmodrome in Kazakhstan. The launch window extends until about Nov. 25. Elements of the spacecraft are undergoing final prelaunch testing at Baikonur.

Flight version of the Phobos-Grunt spacecraft during assembly in preparation for critical testing in thermal and vacuum chamber at NITs RKP facility closely imitating harsh conditions of the real space flight. Credit: NPO Lovochkin

Baikonur is the same location from which Russian manned Soyuz rockets lift off for the International Space Station. Just like NASA’s Curiosity Mars rover, the mission was originally intended for a 2009 launch but was prudently delayed to fix a number of technical problems.

“November will see the launch of the Phobos-Grunt interplanetary automatic research station aimed at delivering samples of the Martian natural satellite’s soil to Earth’” said Vladimir Popovkin, head of the Russian Federal Space Agency, speaking recently at a session of the State Duma according to the Voice of Russia, a Russian government news agency.

Phobos-Grunt spacecraft

The spacecraft will reach the vicinity of Mars after an 11 month interplanetary cruise around October 2012. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos. It will conduct a comprehensive analysis of the surface of the tiny moon and collect up to 200 grams of soil and rocks with a robotic arm and drill.

Russian Phobos-Grunt spacecraft prepares for testing inside the vacuum chamber. Credit: NPO Lavochkin

After about a year of surface operations, the loaded return vehicle will blast off from Phobos and arrive back at Earth around August 2014. These would be the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 in 1976.

“The way back will take between nine and 11 months, after which the return capsule will enter Earth’s atmosphere at a speed of 12 kilometers per second. The capsule has neither parachute nor radio communication and will break its speed thanks to its conical shape,” said chief spacecraft constructor Maksim Martynov according to a report from the Russia Today news agency. He added that there are two soil collection manipulators on the lander because of uncertainties in the characteristics of Phobos soil.

Phobos-Grunt was built by NPO Lavochkin and consists of a cruise stage, orbiter/lander, ascent vehicle, and Earth return vehicle.

The spacecraft weighs nearly 12,000 kg and is equipped with a sophisticated 50 kg international science payload, in particular from France and CNES, the French Space Agency.

Also tucked aboard is the Yinghou-1 microsatellite supplied by China. The 110 kg Yinghou-1 is China’s first probe to launch to Mars and will study the Red Planet’s magnetic and gravity fields and surface environment from orbit for about 1 year.

“It will be the first time such research [at Mars] will be done by two spacecraft simultaneously. The research will help understand how the erosion of Mars’ atmosphere happens,” said Professor Lev Zelyony from the Space Research Institute of the Russian Academy of Science, according to Russia Today.

Phobos-Grunt mission scenario. Credit: CNES
Phobos seen by Mars Express. Credit: ESA

Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes

Hayabusa Sample Return Capsule Retrieved

Hayabusa's sample return cannister and parachute on the ground in the Australian outback. Credit: JAXA

[/caption]

Scientists from Japan were given the go-ahead to retrieve the sample return capsule from the Hayabusa spacecraft, which is hoped to contain the first piece of asteroid ever brought to Earth, perhaps providing insight into the origins of asteroids – and our universe. The capsule was ejected three hours before reaching Earth, and the sample canister descended through Earth’s atmosphere, preceding the spacecraft which broke up in spectacular fashion (click here to see the video) over the Australian Outback. The capsule lay in the Woomera Prohibited Area until morning when Aboriginal elders deemed it had not landed in any indigenous sacred sites, giving the OK for the scientists to retrieve it.

The insulated and cushioned re-entry capsule, 40 cm in diameter and 25 cm deep has a mass of about 20 kg. The capsule had a convex nose covered with a 3 cm thick ablative heat shield to protect the samples from the high velocity (~13 km/s) re-entry.

Apparently, it landed right on target. The director of the Woomera test range, Doug Gerrie, said the probe had completed a textbook landing in the South Australian desert. “They landed it exactly where they nominated they would.

Hayabusa's heat shield was also recovered from the Australian outback. Credit: JAXA

The capsule will remain sealed until it arrives at the JAXA facility near Tokyo, and may remain unopened for weeks as it undergoes testing.

The mission launched in 2003, and endured a series of technical glitches over its five-billion-kilometer (three-billion-mile) journey to the asteroid Itokawa and back. A large solar flare in late 2003 “injured” the solar panels, providing less power to Hayabusa’s ion engines, delaying the rendezvous with the asteroid. Then, as the spacecraft approached Itokawa, Hayabusa lost the use of its Y-axis reaction wheel. While it flew near the asteroid and sent back data, scientists and engineers aren’t sure if the spacecraft was successful in obtaining samples, as while it appears Hayabusa landed briefly, it is not certain the “bullets” fired to stir up dust for the container to capture. The return to Earth was delayed by three years from more thruster and navigational failures, but the JAXA team nursed and coaxed the spacecraft back home to a spectacular return. There was concern that the parachute batteries may be been depleted due to the extra time it took to get back to Earth, but obviously they worked quite well.

Sources: JAXA, NASA, AFP

Hayabusa on the Homestretch on Return to Earth

Hayabusa's sample return capsule descends under parachute toward the Woomera desert, Australia. Credit: Corby Waste and Tommy Thompson for NASA / JPL

[/caption]
After overcoming multiple serious glitches, and a three-year delay in its four billion miles (six billion kilometers) round-trip journey, JAXA’s Hayabusa spacecraft is expected to land in Australia around 14:00 UTC on Sunday, June 13; (midnight local time in Australia, 11 pm in Japan and 11:00 a.m. ET in the US). Scientists and space enthusiasts alike are hoping there is some precious cargo aboard in the sample return capsule: dust from an asteroid.

The latest word from JAXA, as of this writing, is that all systems were doing well on Hayabusa. The teams assessed the trajectory of Hayabusa and confirmed that everything was nominal.

If all goes well, Hayabusa will release a canister that will land in the Woomera Prohibited Area in the outback of South Australia; Hayabusa itself will follow, putting on a show over Australia as it breaks up and incinerates in Earth’s atmosphere.

You can follow the landing in several ways. A NASA team will be attempting to observe the re-entry of Hayabusa in a DC-8 plane, and they hope to have a webcast at this link.

There will be a “Hayabusa Live” website and a Hayabusa blog will be updated frequently, plus this Hayabusa Twitter feed.

Here’s a link to a finder chart and more from Paul Floyd at his website, Night Sky Online.

The Hayabusa spacecraft, formerly known as MUSES-C launched on May 9, 2003 and rendezvoused with the asteroid Itokawa in mid-September 2005. Hayabusa studied the asteroid’s shape, spin, topography, color, composition, density, and history. Then in November 2005, it attempted to land on the asteroid to collect samples but failed to do so. However, it is hoped that some dust swirled into the sampling chamber. You can listen to Universe Today writer Steve Nerlich (from Cheap Astronomy) tell the story of Hayabusa’s trials and tribulations on this 365 Days of Astronomy podcast.

The aim of the $200 million Hayabusa project was to learn more about asteroids and to help in our understanding of the origin and evolution of the solar system.

If Hayabusa is indeed carrying samples from the asteroid, it would be only the fourth sample return of space material in history — including the moon matter collected by the Apollo missions, comet matter by Stardust and solar matter in the Genesis mission.

We’re all hoping for the best for this first sample return from an asteroid, and it should be an interesting time in Australia. Dozens of scientists will be watching and waiting to see the return.

A view of Woomera from the Ghan train. Credit: Col Maybury

Plus, as Col Maybury from radio station 2NUR in Australia tells me, all traffic around the area will be stopped, including the Ghan train, one of the world’s great trains that travels from south to north across the continent of Australia, and it happens to be passing through Woomera right at the time Hayabusa should be returning. Col said he called the train company, and was told that the train engineers are to keep a look out for the entry trail.

“So a mighty train named after Afghan camel drivers may have to halt for a small spacecraft or be hit by a flying object,” Col wrote me in an email. He will have a live report on Radio 2NUR-FM on Tuesday the 15th at 10:20 am in Newcastle, 12:20 GMT, talking with the Woomera officials for a follow-up of the Hayabusa event.

Preliminary analysis of the samples will be carried out by the team in Japan, but after one year scientists around the world can apply for access to bits of the asteroid material for research.