Russian Progress Launch Restores Critical Cargo Lifeline to Space Station

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Story updated[/caption]

A sigh of relief was heard worldwide with today’s (July 3) successful launch to orbit of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome, signifying the restoration of Russia’s critical cargo lifeline to the International Space Station (ISS), some two months after the devastating launch failure of the prior Progress 59 spaceship on April 28.

Friday’s triumphant Progress launch also comes just five days after America’s cargo deliveries to the ISS were put on hold following the spectacular failure of a commercial SpaceX Falcon 9 rocket launched from the Florida Space Coast on Sunday, June 28, carrying the unpiloted SpaceX Dragon CRS-7 which broke up in flight.

The Progress 60 resupply ship, also known as Progress M-28M, was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.

The Soyuz-U carrier rocket launched Progress into blue skies at 10:55 a.m. local time in Baikonur (12:55 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. The launch was webcast live on NASA TV.

“Everything went by the book,” said NASA commentator Rob Navias during the webcast. “Everything is nominal.”

The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

The International Space Station was flying about 249 miles over northwestern Sudan, near the border with Egypt and Libya, at the moment of liftoff. Note: See an exquisite photo of the Egyptian pyramid photographed from the ISS in my recent story – here.

After successfully separating from the third stage Progress reach its preliminary orbit less than 10 minutes after launch from Baikonur and deployed its solar arrays and navigational antennas as planned.

Live video was received from Progress after achieving orbit showing a beautiful view of the Earth below.

A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV
A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV

A two day chase of 34 orbits of Earth over the next two days will bring the cargo craft to the vicinity of the station for a planned docking to the Russian segment of the orbiting laboratory at 3:13 a.m. Sunday, July 5.

NASA TV will provide live coverage of the arrival and docking operation to the Pirs Docking Compartment starting at 2:30 a.m. EDT on Sunday, July 5.

Watch live on NASA TV and online at http://www.nasa.gov/nasatv

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka are currently living and working aboard the station as the initial trio of Expedition 44 following the safe departure and landing of the three person Expedition 43 crew in mid June.

Kelly and Kornienko comprise the first ever 1 Year Crew to serve aboard the ISS and are about three months into their stay in space.

In the span of just the past eight months, three launches of unmanned cargo delivery runs to the space station have failed involving both American and Russian rockets.

The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.

The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive and frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.

The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the Soyuz booster rockets third stage and spun wildly out of control on April 28, 2015 and eventually crashed weeks later during an uncontrolled plummet back to Earth over the ocean on May 8. The loss was traced to an abnormal third stage separation event.

Roscosmos, the Russian Federal Space Agency, switched this Progress vehicle to an older version of the Soyuz rocket which had a different third stage configuration that was not involved in the April failure.

The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV
The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV

Russian officials decided to move up the launch by about a month from its originally planned launch date in August in order to restock the station crew with critically needed supplies as soon as practical.

Following Sundays SpaceX cargo launch failure, the over 6100 pounds of new supplies on Progress are urgently needed more than ever before. Loaded aboard are 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, tools and spare parts and parcels for the crew.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

In the wake of the trio of American and Russian launch failures, the crews current enjoy only about four month of supplies reserves compared to the more desirable six months stockpile in case of launch mishaps.

Progress 60 will extend the station supplies by about a month’s time.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Kelly and Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.

The three cargo launch failures so close together are unprecedented in the history of the ISS program over the past two decades.

The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Longest Woman Spaceflyer to Return as Russia Reshuffles Station Launches After Rocket Failure

The longest space mission in history by a female astronaut is now set to conclude on Thursday, following Russia’s confirmation of a significant reshuffling of the crew and cargo flight manifest to the International Space Station (ISS) for the remainder of 2015 – all in the wake of the unexpected Russian launch failure of a station bound Progress resupply ship in late April with far reaching consequences.

The record setting flight of approximately 200 days by Italian spaceflyer Samantha Cristoforetti, along with her two Expedition 43 crewmates, will come to an end on Thursday, June 11, when the trio are set to undock and depart the station aboard their Russian Soyuz crew capsule and return back to Earth a few hours later.

NASA TV coverage begins at 6 a.m. EDT on June 11.

Roscosmos, the Russian Federal Space Agency, officially announced today, June 9, a revamped schedule changing the launch dates of several upcoming crewed launches this year to the Earth orbiting outpost.

Launch dates for the next three Progress cargo flights have also been adjusted.

The next three person ISS crew will now launch between July 23 to 25 on the Soyuz TMA-17M capsule from the Baikonur cosmodrome in Kazakhstan. The exact timing of the Expedition 44 launch using a Russian Soyuz-FG booster is yet to be determined.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Soon after the Progress mishap, the Expedition 43 mission was extended by about a month so as to minimize the period when the ISS is staffed by only a reduced crew of three people aboard – since the blastoff of the next crew was simultaneously delayed by Roscosmos by about two months from May to late July.

Indeed Cristoforetti’s endurance record only came about as a result of the very late mission extension ordered by Roscosmos, so the agency could investigate the root cause of the recent launch failure of the Russian Progress 59 freighter that spun wildly out of control soon after blastoff on April 28 on a Soyuz-2.1A carrier rocket.

Roscosmos determined that the Progress failure was caused by an “abnormal separation of the 3rd stage and the cargo vehicle” along with “associated frequency dynamic characteristics.”

The Expedition 43 crew comprising of Cristoforetti, NASA astronaut and current station commander Terry Virts, and Russian cosmonaut Anton Shkaplerov had been scheduled to head back home around May 13. The trio have been working and living aboard the complex since November 2014.

The 38-year old Cristoforetti actually broke the current space flight endurance record for a female astronaut during this past weekend on Saturday, June 6, when she eclipsed the record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Cristoforetti, of the European Space Agency (ESA), also counts as Italy’s first female astronaut.

The Progress 59 cargo vessel, also known as Progress M-27M, along with all its 2.5 tons of contents were destroyed during an uncontrolled plummet back to Earth on May 8.

NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth - now set for June 11, 2015.  Credits: NASA
NASA astronaut Terry Virts (left) Commander of Expedition 43 on the International Space Station along with crewmates Russian cosmonaut Anton Shkaplerov (center) and ESA (European Space Agency) astronaut Samantha Cristoforetti on May 6, 2015 perform a checkout of their Russian Soyuz spacesuits in preparation for the journey back to Earth – now set for June 11, 2015. Credits: NASA

Roscosmos announced that they are accelerating the planned launch of the next planned Progress 60 (or M-28M) from August 6 up to July 3 on a Soyuz-U carrier rocket, which is different from the problematic Soyuz-2.1A rocket.

Following the Soyuz crew launch in late July, the next Soyuz will blastoff on Sept. 1 for a 10 day taxi mission on the TMA-18M capsule with cosmonaut Sergei Volkov and ESA astronaut Andreas Mogensen. After British opera singer Sarah Brightman withdrew from participating as a space tourist, a new third crew member will be named soon by Roscosmos.

The final crewed Soyuz of 2015 with the TMA-19M capsule has been postponed from Nov. 20 to Dec. 15.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

The Dragon will be carrying critical US equipment, known as the IDA, enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy.  Credit: NASA
ESA (European Space Agency) astronaut Samantha Cristoforetti enjoys a drink from the new ISSpresso machine. The espresso device allows crews to make tea, coffee, broth, or other hot beverages they might enjoy. Credit: NASA

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Orders First Ever Commercial Human Spaceflight Mission from Boeing

The restoration of America’s ability to launch American astronauts to the International Space Station (ISS) from American soil in 2017 took a major step forward when NASA ordered the first ever commercial human spaceflight mission from Boeing.

NASA’s Commercial Crew Program (CCP) office gave the first commercial crew rotation mission award to the Boeing Company to launch its CST-100 astronaut crew capsule to the ISS by late 2017, so long as the company satisfactorily meets all of NASA’s human spaceflight certification milestones.

Thus begins the history making new era of commercial human spaceflight.

“This occasion will go in the books of Boeing’s nearly 100 years of aerospace and more than 50 years of space flight history,” said John Elbon, vice president and general manager of Boeing’s Space Exploration division, in a statement.

“We look forward to ushering in a new era in human space exploration.”

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 ‘space taxi’ under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the commercial crew and station programs,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“Our strategy will result in safe, reliable and cost-effective crew missions.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry four to seven person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The CST-100 will be carried to low Earth orbit atop a manrated United Launch Alliance Atlas V rocket launching from Cape Canaveral Air Force Station, Florida.

Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.

“Orders under the CCtCap contracts are made two to three years prior to the missions to provide time for each company to manufacture and assemble the launch vehicle and spacecraft. In addition, each company must successfully complete the certification process before NASA will give the final approval for flight,” says NASA.

Boeing got the mission order from NASA because they have “successfully demonstrated to NASA that the Commercial Crew Transportation System has reached design maturity appropriate to proceed to assembly, integration and test activities.”

Boeing recently completed the fourth milestone in the CCtCap phase dubbed the delta integrated critical design review.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule.

ISS Soyuz crew rotation missions are currently on hold due to the recent launch failure of the Russian Soyuz booster and Progress resupply vessel earlier this month.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

SpaceX conducted a successful Pad Abort Test of the Crew Dragon on May 6, fulfilling a key NASA milestone, as I reported here.

NASA will order a commercial mission from SpaceX sometime later this year. At a later date NASA will decide which company will fly the first commercial crew rotation mission to the ISS.

Both the CST-100 and Crew Dragon will typically carry a crew of four or five NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.

The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.

The station crew will also be enlarged to seven people that will enable a doubling of research time.

“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist.

“It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”

NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA
NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

2nd Launch Disaster in 3 Weeks Strikes Russia, Destroying Proton Rocket and Mexican Comsat

Russian Proton rocket blasts off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan but ended in disaster about eight minutes later with destruction of the rocket and Mexican comsat satellite payload heading to orbit. Credit: Roscosmos
Story updated with additional details [/caption]

For the second time in less than three weeks, a major disaster struck the Russian space program when the launch of a Proton-M rocket ended in catastrophic failure about eight minutes after today’s (May 16) liftoff from the Baikonur Cosmodrome in Kazakhstan, resulting in the complete destruction of the Mexican communications satellite payload.

The Proton-M rocket initially lifted off successfully at 11:47 a.m. local time (1:47 a.m. EDT, 547 GMT) from the Baikonur Cosmodrome in Kazakhstan, but soon experienced an “emergency situation at 497 seconds into the flight,” according to a brief official statement released by Roscosmos, the Russian Federal Space Agency today, after the mishap.

The launch catastrophe was caused by a failure in the rockets Breeze-M third stage, says Roscosmos. It took place during a live broadcast from the agency’s website. A video shows the rocket disappearing into cloudy skies shortly after liftoff.

The failure comes just one week after the spinning, out-of-control Russian Progress 59 cargo freighter bound for the ISS met its undesired early demise when it fell uncontrolled from orbit last Friday, May 8, following its botched April 28 launch on a Russian Soyuz-2.1A carrier rocket, also from Baikonur – as reported by Universe Today – here, here, and here.

The Proton-M carrier rocket was lofting the Mexsat 1 communications satellite, also known as Centenario, under a contract with the Mexican government.

“The failure happened on the 497th second of the flight, at an altitude of 161 kilometers [100 miles]. The third stage, the booster vehicle and the spacecraft almost completely burned up in the atmosphere. As of now there are no reports of debris reaching the ground,” the agency said in a statement.

Prelaunch view of Russian Proton rocket poised at launch pad at the Baikonur Cosmodrome in Kazakhstan.   Credit: Roscosmos
Prelaunch view of Russian Proton rocket poised at launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: Roscosmos

The Breeze-M third stage was to loft Mexsat 1 to its destination in geostationary orbit over 22,000 miles above Earth at 113 degrees west longitude.

The 58.2 m (191 ft) tall Proton rocket is built and operated by Khrunichev State Research and Production Space Center and marketed by International Launch Services (ILS).

After reaching an altitude of about 161 km (100 mi) the rocket and Mexsat 1 payload fell back to Earth and burned up over the Chita region of Russia, which is located south west of the Siberian Baikal region, said the Russian News agency TASS.

“The rocket and its payload, a Mexican communication satellite, burned up in the atmosphere,” according to a report by Sputnik International, a Russian News agency.

At this time, local residents have not reported or claimed anything regarding possible debris and there is no information about casualties or destruction, TASS noted.

Mi8 helicopters from Russia’s Emergencies Ministry have been dispatched to the area to look for any debris.

The 5.4 ton Mexsat 1 communication satellite was built by Boeing Satellite Systems International for the Mexican government’s Ministry of Communications and Transportation, the Secretaria de Comunicaciones y Transportes (SCT).

Russian Proton rocket in flight after blast off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. It ended in disaster about eight minutes later with destruction of the rocket and Mexican satellite payload heading to orbit.  Credit: Roscosmos
Russian Proton rocket in flight after blast off at 11:47 a.m. local time (1:47 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. It ended in disaster about eight minutes later with destruction of the rocket and Mexican satellite payload heading to orbit. Credit: Roscosmos

The Breeze-M failure occurred about 1 minute prior to separation of the third stage from Mexsat 1.

“The emergency situation happened at 08:56 Moscow time, one minute to the scheduled separation of the Breeze-M booster and the Mexican MexSat-1 space apparatus,” TASS reported.

A malfunction with the third stage steering engine may be the cause of the doomed flight.

“A preliminary reason of the accident with Proton is a failure of the steering engines of the third stage,” sources told TASS.

“The analysis of the telemetry allows for supposing that there was a failure in one of the third stage’s steering engines. This is now considered as one of the main reasons.”

Exactly one year ago, another Proton rocket crashed at a similar point when the third stage engines failed during the Proton launch of Russia’s advanced Express-AM4R satellite.

“Khrunichev and International Launch Services (ILS) regret to announce an anomaly during today’s Proton mission,” ILS said in a statement issued after the launch failure.

ILS said an accident investigation board has been appointed to determine the cause of the failure and recommend corrective actions.

“A Russian State Commission has begun the process of determining the reasons for the anomaly. ILS will release details when data becomes available,” said ILS.

They hope to return the workhorse Proton to flight as soon as possible.

“ILS remains committed to providing reliable, timely launch services for all its customers. To this end, ILS will work diligently with its partner Khrunichev to return Proton to flight as soon as possible.”

This was the eleventh failure of the Proton-M rocket or Breeze-M upper stage in 116 launches since the inaugural liftoff in April 2001.

Mexsat 1 had a planned lifetime of 15 years. It was to provide mobile satellite services to support national security, civil and humanitarian efforts and will provide disaster relief, emergency services, telemedicine, rural education, and government agency operations.

Media reports indicate it was insured for about $390 million.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Spectacular Southern Lights, Shooting Stars, Sahara Snapshots and more from ESA’s Alexander Gerst aboard ISS

Spectacular snapshots of the Southern Lights, Shooting Stars, the Sahara Desert and much more are streaming back from space to Earth courtesy of Alexander Gerst, ESA’s German astronaut currently serving aboard the International Space Station (ISS).

See a gallery of Alex’s stunning space-based views (sagenhafte Weltraum bilder) collected herein – starting with the auroral fireworks seen from space – above. It coincides with the Earth-based fireworks of America’s 4th of July Independence Day weekend celebrations and spectacular Noctilucent Clouds (NLCs) wafting over the Northern Hemisphere. NLC gallery here.

“Saw a beautiful Southern Light last night. I so wish you could see this with your own eyes!” Alex tweeted in English.

Gerst is posting his Earth & space imagery from the ISS on a variety of social media including Twitter, Facebook, Google+ and his ESA astronaut blog bilingually in English and German.

Another new snapshot of Earth’s “beautiful Southern Lights”  taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
Another new snapshot of Earth’s “beautiful Southern Lights” taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst

“Habe gestern ein wunderschönes Südlicht gesehen. Ich wünschte ihr könntet das mit eigenen Augen sehen!” Alex tweeted in German.

Check out Alexander Gerst’s stunning 1st timelapse video from the ISS:

Video Caption: ESA astronaut Alexander Gerst’s first timelapse from the International Space Station features the first shooting star that he saw from above. Made by stitching together over 250 images this short clip shows the beauty of our world and the space around it. Published on July 5, 2014. Credit: ESA/Alexander Gerst

Gerst launched to the ISS on his rookie space flight on May 28, 2014 aboard a Russian Soyuz capsule along with Russian cosmonaut Maxim Suraev and NASA astronaut Reid Wiseman.

ISS Expedition 40 patch
ISS Expedition 40 patch

The trio are members of Expeditions 40 and 41 and joined three more station flyers already aboard – cosmonauts Alexander Skvortsov & Oleg Artemyev and astronaut Steve Swanson – to bring the station crew complement to six.

Alex will spend six months on the ISS for ESA’s Blue Dot mission. He is Germany’s third astronaut to visit the ISS. He is trained as a geophysicist and a volcanologist.

Gerst also has practiced and honed another talent – space barber! He shaved the heads of his two American crew mates – to match his bald head – after winning a friendly wager with them when Germany beat the US in a 2014 FIFA World Cup match on June 26.

Here’s several of Alexander Gerst’s newest views of the Sahara Desert and more.

“Even from space, the Sahara looks dry! Sogar vom Weltraum aus, sieht die Sahara trocken aus!” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Even from space, the Sahara looks dry! Sogar vom Weltraum aus, sieht die Sahara trocken aus!” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Harsh land. Windswept valleys in northern Africa. Hartes Land. Windgefraeste Taeler in Nordafrika.” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Harsh land. Windswept valleys in northern Africa. Hartes Land. Windgefraeste Taeler in Nordafrika.” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Sometimes our atmosphere looks incredibly complex and three-dimensional, sometimes you don't even see it. Manchmal schaut unsere Atmosphäre unglaublich Komplex und dreidimensional aus, manchmal fast unsichtbar.”  Taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
“Sometimes our atmosphere looks incredibly complex and three-dimensional, sometimes you don’t even see it. Manchmal schaut unsere Atmosphäre unglaublich Komplex und dreidimensional aus, manchmal fast unsichtbar.” Taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
Antarctic aurora.  The Antarctic aurora, photographed by ESA astronaut Alexander Gerst and posted on social media with the comment: "Antarctic Aurora fleeing from  sunrise. I have rarely seen something more magical in my life!" Credits: ESA/NASA/Alexander Gerst
Antarctic aurora. The Antarctic aurora, photographed by ESA astronaut Alexander Gerst and posted on social media with the comment: “Antarctic Aurora fleeing from sunrise. I have rarely seen something more magical in my life!” Credits: ESA/NASA/Alexander Gerst

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Moscow Delivers Double Whammy to US Space Efforts – Bans Rocket Engines for Military Use, Won’t Prolong ISS Work

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

Moscow delivered a double whammy of bad news to a broad range of US space efforts today by banning the use of Russian made rocket engines for US military national security launches and by declining to prolong cooperation on the International Space Station (ISS) – says Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries.

Rogozin was quoted in a story prominently featured today, May 13, on the English language website of Russia Today, a Russian TV news and cultural network.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” said Rogozin according to the Russia Today report.

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucial US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are clearly at risk amidst the current Ukrainian crisis as tensions continue to escalate with deadly new clashes reported today in Ukraine – with global repercussions.

The engines at issue are the Russian made RD-180 engines – which power the first stage of the venerable Atlas V rocket built by United Launch Alliance (ULA) and are used to launch a wide array of US government satellites including top secret US military spy satellites for the US National Reconnaissance Office, like NROL-67, as well as science satellites for NASA like the Curiosity Mars rover and MAVEN Mars orbiter.

The dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash. Rogozin’s statement effectively blocks their export to the US.

Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti
Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti

“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.

So although the launch of NASA science missions might preliminarily appear to be exempt, they could still be at serious risk based on a qualifier from Rogozin, pertaining to RD-180 engines already delivered.

“If such guarantees aren’t provided the Russian side will also be unable to perform routine maintenance for the engines, which have been previously delivered to the US, he added.

A ULA spokesperson told me that the company has a two year supply of RD-180 engines already stockpiled in the US.

Rogozin’s statements today are clearly in retaliation to stiffened economic sanctions imposed by the US and Western nations in response to Russia’s actions in the ongoing crisis in Ukraine and the annexation of Crimea; as I reported earlier here, here and here.

Therefore, US National Security spy satellite and NASA science launches are left lingering with uncertainty and potential disarray.

Rogozin is specifically named on the US economic sanctions target list.

He was also named by SpaceX CEO Elon Musk in his firms attempt to block the importation of the RD-180 engines by ULA for the Atlas V as a violation of US sanctions.

Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order last Thursday, May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.

Rogozin went on to say that “Moscow also isn’t planning to agree to the US offer of prolonging operation of the International Space Station (ISS) [to 2024].

“We currently project that we’ll require the ISS until 2020,” he said. “We need to understand how much profit we’re making by using the station, calculate all the expenses and depending on the results decide what to do next.”

“A completely new concept for further space exploration is currently being developed by the relevant Russian agencies”.

NASA announced early this year the agency’s intention to extend ISS operations to at least 2024, and is seeking agreement from all the ISS partners including Russia.

Since the shutdown of the Space Shuttle program in 2011 before a replacement crew vehicle was available, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back.

Congress has also repeatedly slashed NASA’s commercial crew program budget, forcing at least an 18 month delay in its start up and thus continued reliance on the Soyuz for years to come at over $70 million per seat.

NASA thus has NO immediate alternatives to Russia’s Soyuz – period.

The Atlas V is also planned as the launcher for two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.

In a previous statement regarding the US sanctions against Russia, Rogozin said that sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida.  Credit: Ken Kremer
NASA’s Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Atlas V 1st stage is powered by Russian made RD-180 engines.
Credit: Ken Kremer – kenkremer.com

Watch for Ken’s articles as the Ukraine crisis escalates with uncertain and potentially dire consequences for US National Security and NASA.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

The International Space Station (ISS) in low Earth orbit.  Credit: NASA
The International Space Station (ISS) in low Earth orbit.
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA

Flawless Maiden Launch for Europe’s New Vega Rocket

[/caption]

Europe scored a major space success with today’s (Feb. 13) flawless maiden launch of the brand new Vega rocket from Europe’s Spaceport in Kourou, French Guiana.

The four stage Vega lifted off on the VV01 flight at 5:00 a.m. EST (10:00 GMT, 11:00 CET, 07:00 local time) from a new launch pad in South America, conducted a perfectly executed qualification flight and deployed 9 science satellites into Earth orbit.

Vega is a small rocket launcher designed to loft science and Earth observation satellites.

Liftoff of Maiden Vega Rocket on Feb. 13, 2012 on VV01 flight from ESA Spaceport at French Guiana. Credit: ESA

The payload consists of two Italian satellites – ASI’s LARES laser relativity satellite and the University of Bologna’s ALMASat-1 – as well as seven picosatellites provided by European universities: [email protected] (Italy), Goliat (Romania), MaSat-1 (Hungary), PW-Sat (Poland), Robusta (France), UniCubeSat GG (Italy) and Xatcobeo (Spain).

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's Spaceport in French Guiana. Credits: ESA - S. Corvaja

Three of these cubesats were the first ever satellites to be built by Poland, Hungary and Romania. They were constructed by University students who were given a once in a lifetime opportunity by ESA to get practical experience and launch their satellites for free since this was Vega’s first flight.

The 30 meter tall Vega has been been under development for 9 years by the European Space Agency (ESA) and its partners, the Italian Space Agency (ASI), French Space Agency (CNES). Seven Member States contributed to the program including Belgium, France, Italy, the Netherlands, Spain, Sweden and Switzerland as well as industry.

Vega's first launch, dubbed VV01, occurred on Feb 13, 2012 from Europe's Spaceport in Kourou, French Guiana. It carried nine satellites into orbit: LARES, ALMASat-1 and seven Cubesats. Credits: ESA - J. Huart
ESA can now boast a family of three booster rockets that can service the full range of satellites from small to medium to heavy weight at their rapidly expanding South American Spaceport at the Guiana Space Center.

Vega joins Europe’s stable of launchers including the venerable Ariane V heavy lifter rocket family and the newly inaugurated medium class Russian built Soyuz booster and provides ESA with an enormous commercial leap in the satellite launching arena.

“In a little more than three months, Europe has increased the number of launchers it operates from one to three, widening significantly the range of launch services offered by the European operator Arianespace. There is not anymore one single European satellite which cannot be launched by a European launcher service,” said Jean-Jacques Dordain, Director General of ESA.

“It is a great day for ESA, its Member States, in particularly Italy where Vega was born, for European industry and for Arianespace.”

Dordain noted that an additional 200 workers have been hired in Guiana to meet the needs of Europe’s burgeoning space programs. Whereas budget cutbacks are forcing NASA and its contractors to lay off tens of thousands of people as a result of fallout from the global economic recession.

LARES, ALMASat-1 and CubeSats satellites integration for 1st Vega launch.
Credits: ESA, CNES, Arianespace, Optique Video du CSG, P. Baudon

ESA has already signed commercial contracts for future Vega launches and 5 more Vega rockets are already in production.

Vega’s light launch capacity accommodates a wide range of satellites – from 300 kg to 2500 kg – into a wide variety of orbits, from equatorial to Sun-synchronous.

“Today is a moment of pride for Europe as well as those around 1000 individuals who have been involved in developing the world’s most modern and competitive launcher system for small satellites,” said Antonio Fabrizi, ESA’s Director of Launchers.

ESA’s new Vega rocket fully assembled on its launch pad at Europe’s Spaceport in Kourou, French Guiana.

Budget Axe to Gore America’s Future Exploration of Mars and Search for Martian Life

[/caption]

America’s hugely successful Mars Exploration program is apparently about to be gutted by Obama Administration officials wielding a hefty budget axe in Washington, D.C. Consequently, Russia has been invited to join the program to replace American science instruments and rockets being scrapped.

NASA’s Fiscal 2013 Budget is due to be announced on Monday, February 13 and its widely reported that the Mars science mission budget will be cut nearly in half as part of a significant decline in funding for NASA’s Planetary Science Division.

The proposed deep slash to the Mars exploration budget would kill NASA’s participation in two new missions dubbed “ExoMars” set to launch in 2016 and 2018 as a joint collaboration with the European Space Agency (ESA).

The ESA/NASA partnership would have dispatched the Trace Gas Orbiter to the Red Planet in 2016 to search for atmospheric methane, a potential signature for microbial life, and an advanced Astrobiology rover to drill deeper into the surface in 2018. These ambitious missions had the best chance yet to determine if Life ever evolved on Mars.

The 2016 and 2018 ExoMars probes were designed to look for evidence of life on Mars and set the stage for follow on missions to retrieve the first ever soil samples from the Red Planet’s surface and eventually land humans on Mars.

Joint ESA/NASA ExoMars Exploration Missions
- Planned 2016 Orbiter and 2018 Rover. NASA participation will be scrapped due to slashed NASA funding by the Obama Admnistartion. Credit: ESA

The proposed Mars budget cuts will obliterate these top priority science goals for NASA.

The BBC reports that “ a public announcement by NASA of its withdrawal from the ExoMars program will probably come once President Obama’s 2013 Federal Budget Request is submitted.”

A Feb. 9 article in ScienceInsider, a publication of the journal Science, states that “President Barack Obama will propose a $300 million cut in NASA’s planetary science programs as part of his 2013 request for the agency.”

This would amount to a 20% cut from $1.5 Billion in 2012 to $1.2 Billion in 2013. The bulk of that reduction is aimed squarely at purposefully eliminating the ExoMars program. And further deep cuts are planned in coming years !

ExoMars Trace Gas Orbiter would search for atmospheric methane at Mars. NASA instruments to be deleted as a result of budget cuts. Credit: ESA

The Mars budget of about $580 million this year would be radically reduced by over $200 million, thereby necessitating the end of NASA’s participation in ExoMars. These cuts will have a devastating impact on American scientists and engineers working on Mars missions.

The fallout from the looming science funding cuts also caused one longtime and top NASA manager to resign.

According to ScienceInsider, Ed Weiler, NASA’s science mission chief, says he “quit NASA Over Cuts to Mars Program.”

“The Mars program is one of the crown jewels of NASA,” said Ed Weiler to ScienceInsider.

“In what irrational, Homer Simpson world would we single it out for disproportionate cuts?”

“This is not about the science mission directorate, this is not even about NASA. This is about the country. We are the only country in the world that has demonstrated the capability to land anything on Mars. How can we allow that to be undermined?”

Weiler’s resignation from NASA on Sept. 30, 2011 was sudden and quick, virtually from one day to the next. And it came shortly after the successful launch of NASA’s GRAIL lunar probes, when I spoke to Weiler about Mars and NASA’s Planetary Science missions and the gloomy future outlook. Read my earlier Universe Today story about Weiler’s retirement.

Ed Weiler was the Associate Administrator for NASA’s Science Mission Directorate (SMD) and his distinguished career spanned almost 33 years.

The dire wrangling over NASA’s 2013 budget has been ongoing for many months and some of the funding reductions had already leaked out. For example NASA had already notified ESA that the US could not provide funding for the Atlas V launchers in 2016 and 2018. Furthermore, Weiler and other NASA managers told me the 2018 mission was de-scoped from two surface rovers down to just one to try and save the Mars mission program.

ESA is now inviting Russian participation to replace the total American pullout, which will devastate the future of Red Planet science in the US. American scientists and science instruments would be deleted from the 2016 and 2018 ExoMars missions.

The only approved US mission to Mars is the MAVEN orbiter due to blastoff in 2013 – and there are NO cameras aboard MAVEN.

Three Generations of US Mars Rovers - 4th Generation ExoMars rover to be Axed by NASA budget cuts.

NASA is caught in an inescapable squeeze between rising costs for ongoing and ambitious new missions and an extremely tough Federal budget environment with politicians of both political affiliations looking to cut what they can to rein in the deficit, no matter the consequences of “killing the goose that laid the golden egg”.

NASA Watch Editor Keith Cowing wrote; “Details of the FY 2013 NASA budget are starting to trickle out. One of the most prominent changes will be the substantial cut to planetary science at SMD [NASA’s Science Mission Directorate]. At the same time, the agency has to eat $1 billion in Webb telescope overruns – half of which will come out of SMD.”

The cost of the James Webb Space Telescope (JWST) has skyrocketed to $8.7 Billion.

To pay for JWST, NASA is being forced to gut the Mars program and other science missions funded by the same Science Mission Directorate that in the past and present has stirred the public with a mindboggling payoff of astounding science results from many missions that completely reshaped our concept of humankinds place in the Universe.

Meanwhile, China’s space program is rapidly expanding and employing more and more people. China’s scientific and technological prowess and patent applications are increasing and contributing to their fast growing economy as American breakthroughs and capabilities are diminishing.

Under the budget cutting scenario of no vision, the Curiosity Mars Science Laboratory rover will be America’s last Mars rover for a long, long time. Curiosity will thus be the third and last generation of US Mars rovers – 4th generation to be Axed !

China Unveils High Resolution Global Moon Map

[/caption]

Chinese scientists have assembled the highest resolution map ever created of the entire Moon and unveiled a series of global Moon images on Monday, Feb. 6.

The composite Lunar maps were created from over 700 individual images captured by China’s Chang’e-2 spacecraft and released by the country’s State Administration of Science, Technology and Industry for National Defence (SASTIND), according to reports from the state run Xinhua and CCTV new agencies.

“The map and images are the highest-resolution photos of the entirety of the Moon’s surface to be published thus far,” said Liu Dongkui, deputy chief commander of China’s lunar probe project, reports Xinhua.

Of course there are much higher resolution photos of numerous individual locations on the Moon taken from orbit by the spacecraft of other countries and from the surface by NASA’s Apollo lunar landing astronauts as well as unmanned Russian & American lunar landers and rovers.

China unveils High Resolution Global Moon map from Chang'e-2 Lunar Orbiter
Credit: China Space Program

Chang’e-2 is China’s second lunar probe and achieved orbit around our nearest neighbor in space in October 2010. It was launched on Oct. 1, 2010 and is named after a legendary Chinese moon goddess.

The images were snapped between October 2010 and May 2011 using a charge-coupled device (CCD) stereo camera as the spacecraft flew overhead in a highly elliptical orbit ranging from 15 km to 100 km altitude.

The Chang’e-2 maps have a resolution of 7 meters, which is 17 times greater than from China’s first lunar orbiter; Chang’e-1, launched in 2007.

Global Lunar Map from China’s Chang'e-2 Lunar Orbiter. Credit: China Space Program

In fact the maps are detailed enough that Chinese scientists were able to detect traces of the Apollo landers, said Yan Jun, chief application scientist for China’s lunar exploration project.


Chang’e-2 also captured high resolution photos of the “Sinus Iridum”area , or Bay of Rainbows, where China may land their next Moon mission. The camera had the ability to resolve features as small as 1 meter across at the lowest altitude.

The satellite left lunar orbit in June 2011 and is currently orbiting the moon’s second Lagrange Point (L2), located more than 1.5 million km away from Earth.

Chinese space program officials hope for a 2013 liftoff of the Chang’e-3 lunar rover, on what would be China’s first ever landing on another celestial body. China’s next step beyond the rover may be to attempt a lunar sample return mission in 2017.

Demonstrating the ability to successfully conduct an unmanned lunar landing is a key milestone that must be achieved before China can land astronauts on the Moon, perhaps within the next decade.

NASA’s twin GRAIL spacecraft recently achieved Lunar orbit over the New Year’s weekend. The duo of probes were just renamed as “Ebb and Flow” – the winning entries in an essay naming contest submitted by 4th Grade US students from Bozeman, Montana.

At this time NASA does not have the funding or an approved robotic lunar landing mission, due to severe budget cuts.And even worse NASA cuts will be announced shortly !

Russia hopes to send the Lunar Glob spacecraft to land on the Moon around 2015.

Since the United States has unilaterally scuttled its plans to return American astronauts to the Moon’s surface, it’s very possible that the next flag planted on the Moon by humans will be Chinese.

Amazing Panorama of Western Europe at Night from Space Station

[/caption]

An amazing panorama revealing Western Europe’s ‘Cities at Night’ with hardware from the stations robotic ‘hand’ and solar arrays in the foreground was captured by the crew in a beautiful new image showing millions of Earth’s inhabitants from the Earth-orbiting International Space Station (ISS).

The sweeping panoramic vista shows several Western European countries starting with the British Isles partially obscured by twin solar arrays at left, the North Sea at left center, Belgium and the Netherlands (Holland) at bottom center, and the Scandinavian land mass at right center by the hand, or end effector, of the Canadian-built ISS robotic arm known as the Space Station Remote Manipulator System (SSRMS) or Canadarm2.

European Space Agency astronaut Andre Kuipers gazing at Earth from the Cupola dome of the ISS

Coincidentally European Space Agency astronaut Andre Kuipers from Holland (photo at left) is currently aboard the ISS, soaring some 400 kilometers (250 miles) overhead.

The panoramic image was taken by the ISS residents on January 22, 2012.

The Expedition 30 crew of six men currently serving aboard the ISS (photo below) hail from the US, Russia and Holland.

NASA astronaut Dan Burbank is the commander of Expedition 30 and recently snapped awesome photos of Comet Lovejoy.

“Cities at Night” – Here’s a portion of a relevant ISS Blog post from NASA astronaut Don Pettit on Jan. 27, 2012:

“Cities at night are different from their drab daytime counterparts. They present a most spectacular display that rivals a Broadway marquee. And cities around the world are different. Some show blue-green, while others show yellow-orange. Some have rectangular grids, while others look like a fractal-snapshot from Mandelbrot space.”

“Patterns in the countryside are different in Europe, North America, and South America. In space, you can see political boundaries that show up only at night. As if a beacon for humanity, Las Vegas is truly the brightest spot on Earth. Cities at night may very well be the most beautiful unintentional consequence of human activity,” writes NASA astronaut Don Pettit currently residing aboard the ISS.

Comet Lovejoy on 22 Dec. 2011 from the International Space Station. Comet Lovejoy is visible near Earth’s horizon in this nighttime image photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA/Dan Burbank
Expedition 30 Crew: Pictured on the front row are NASA astronaut Dan Burbank, commander; and Russian cosmonaut Oleg Kononenko, flight engineer. Pictured from the left (back row) are Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, all flight engineers. Photo credit: NASA and International Space Station partners