Newly Discovered Asteroid Has a Close Encounter with Earth

As NASA prepares to send a spacecraft to a distant asteroid, another space rock made a surprise visit to Earth’s vicinity. The newly discovered small asteroid, named 2016 RB1, passed safely by Earth, coming within approximately 23,900 miles (38,463 km) of our planet, or just outside the orbit of many communications satellites.

The asteroid passed by Earth at 1:28 p.m. Eastern Time (1728 UT).

An animation of asteroid 2016 RB1 from images obtained by the Virtual Telescope Project on September 6, 2016. Credit: Gianluca Masi/Virtual Telescope Project.
An animation of asteroid 2016 RB1 from images obtained by the Virtual Telescope Project on September 6, 2016. Credit: Gianluca Masi/Virtual Telescope Project.

Click on the image if it is not animating in your browser.

The asteroid was discovered on Monday, September 5 by the Mt. Lemmon Survey telescope in Tucson, Arizona. 2016 RB1 is estimated to be between 24 to 52 feet (7.3 – 16 meters) across, which is just a bit smaller than the Chelyabinsk meteor that exploded over northern Russian in February 2013, which was estimated to be around 56 ft (17 meters) wide.

On Thursday, September 8, NASA hopes to launch its OSIRIS-ReX mission to study asteroid Bennu and conduct a sample return, with the sample coming back to Earth by 2023. With the mission, scientists hope to learn more about the formation and evolution asteroids and of the Solar System as a whole.

Here’s a graphic comparing the small asteroid 2016 RB1 to other objects, compiled by Mikko Tuomela and Massimo Orgiazzi.

Objects on Earth and in space compared to the newly found asteroid 2016 RB1 (center of graphic). Compiled by Mikko Tuomela and Massimo Orgiazzi. Used by permission.
Objects on Earth and in space compared to the newly found asteroid 2016 RB1 (center of graphic). Compiled by Mikko Tuomela and Massimo Orgiazzi. Used by permission.

A few observers were able to track the asteroid, including Gianluac Masi of the Virtual Telescope project, and Ernesto Guido of the Remanzacco Observatory.

An image of 2016 RB1 taken on September 7, 2016, remotely from the Q62 iTelescope network (Siding Spring, Australia). Credit: Ernesto Guido.
An image of 2016 RB1 taken on September 7, 2016, remotely from the Q62 iTelescope network (Siding Spring, Australia). Credit: Ernesto Guido.

2016 RB1 is the third asteroid so far in September 2016 that traveled between the Earth and the Moon. Asteroid 2016 RR1 passed by at 0.32 lunar distances on September 2, and just a few hours later, asteroid 2016 RS1 passed by at 0.48 times the Earth-moon distance. But this latest asteroid pass is the closest, at 0.10 lunar distances.

From its orbit, astronomers have determined 2016 RB1 is likely an Aten asteroid, a group of Near-Earth Objects that cross the orbits of Earth, Venus and even Mercury.

Sources and further reading: Remanzacco Observatory
Virtual Telescope Project
JPL’s Small Body Database
Earth-Sky.org
Ian O’Neill at Discovery Space News/Seeker

Comet ISON and Mars Imaged Together During Close Approach

Comet ISON made its closest approach to Mars yesterday (October 1, 2013) at a distance of 10.5 million km (6.5 million miles). While we await to find out if attempts to image the comet by spacecraft on the surface (update: those images are in — see them here) and in orbit of Mars were successful, astronomers from Earth were able to capture the two planetary bodies together.

You can see the two planetary bodies together in one image below from Ari Koutsouradis in Maryland, but the Remanzacco Observatory team obtained images of Comet ISON as it passed by Mars using the 2 meter Liverpool Telescope. This main image above consists of a stack of 20 exposures, 11 seconds each.

Ernesto Guido, Nick Howes and new team member Martino Nicolini produced this image, showing a “well developed coma and tail measuring at least 3 arc minutes,” the trio wrote on their website.

This image of Mars (lower right) and Comet ISON (upper left) was taken about 5:00 AM EDT in Westminster Maryland using a Nikon D5000 and a Stellarvue 80ED telescope. It's composed of 44 30-second exposures at ISO1600, stacked using DeepSkyStacker. Credit and copyright: Ari Koutsouradis.
This image of Mars (lower right) and Comet ISON (upper left) was taken about 5:00 AM EDT in Westminster Maryland using a Nikon D5000 and a Stellarvue 80ED telescope. It’s composed of 44 30-second exposures at ISO1600, stacked using DeepSkyStacker. Credit and copyright: Ari Koutsouradis.

This image, directly above, taken early this morning by Ari Koutsouradis in Maryland, shows both Mars and the comet in one image, although it highlights the relative distance between the two. Koutsouradis said via Flickr that the comet was not visible with an eyepiece on the scope, but the image stack did manage to bring it out.

During the observations by the Remanzacco team, they wanted to look to see if they could discern additional jet structures on the comet, which had been reported by other observers. Howes told Universe Today, however, the are still looking at their observations to analyze this.

“There was some debate as to the existence of additional jet structures on the comet,” Howes said via email. “Our data analysis seems to show that some reports of this were possibly spurious, however, our one process does seem to show a possible small jet, which a 2m class instrument would be able to detect. Our analysis is undergoing additional review and peer checking with our collaborators in the USA. The scientific analysis of this comet and its inner coma is ongoing, and being monitored closely.”

Update: Later in the day on October 2nd, The Remanzacco team obtained analysis from their U.S collaboration partners. Using their data from the 2m Liverpool telescope, and after processing by Dr. Nalin Samarasinha of the Planetary Science Institute, they have conclusively confirmed a sunward facing feature on Comet ISON. A dust feature was detected by Nalin and Howes’ team in previous ISON observations —see one of our previous articles for more details — though they are not sure if this and the new jet feature are connected.

Using Samarasinha’s own modeling and processing algorithms, the PSI team validated the processing performed by the Remanzacco team which showed a small, but discernible forward-facing feature on the comet. Dr. Samarasinha, a world leading cometary scientist, believes this to be a real feature and not the result of processing artifacts, given the very good signal-to-noise of the data.

“As we said earlier, we suspected one of the processing routines we used showed a real feature, but wanted to be 100% sure with a peer review and further analysis,” said Guido, “and the PSI team has independently shown this.

Here is Dr. Samarasinha’s image processing, using his own division by azimuthal average process to the left, and the Remanzacco team’s MCM (median coma model) process image to the right. The pixel scale is 0.3″/pixel:

Additional analysis and processing shows a forward, Sun-facing feature on Comet ISON. Credit: Dr. Nalin Samarasinha of the Planetary Science Institute.
Additional analysis and processing shows a forward, Sun-facing feature on Comet ISON. Credit: Dr. Nalin Samarasinha of the Planetary Science Institute.

Howes added that their team will continue to monitor ISON as it approaches perihelion (closest approach to the Sun) on November 28.

“Our team has an ongoing programme of observations with a range of telescopes around the world,” he said, “including the iTelescope Network, the LT on La Palma and also with schools on the Faulkes Telescope, in support of two U.S observatory teams. The LT and iTelescope network is currently well placed to take these early observations as the comet approaches perihelion.”

If the comet survives its close pass by the Sun, it will pass closest to Earth on December 26, about 64 million km (40 million miles) away.

Meanwhile, even though NASA had to curtail many of its activities due to the government shutdown, many missions such as the Mars Reconnaissance Orbiter and the Mars Science Laboratory rover Curiosity were still up and running because they are run out of the Jet Propulsion Lab, which runs as a contractor to NASA, and are not government facilities. (JPL is privately run by the California Institute of Technology (Caltech), and the Applied Physics Lab, which operates the MESSENGER and New Horizons missions, is run by Johns Hopkins University, also a contractor to NASA. They’ll be able to operate as long as the money they have received from NASA previously holds out. (So, keep your fingers crossed for a short government shutdown.)

Therefore, imaging attempts by MRO and MSL of Comet ISON from Mars went ahead as scheduled, and we should be hearing how those attempts fared as soon as the images can be received back on Earth and processed. The word from the HiRISE camera team via Twitter is that they were able to image the comet. Stay tuned!

Three different views of Comet ISON's inner coma. Credit: Remanzacco Observatory/Ernest Guido, Nick Howes and Martino Nicolini.
Three different views of Comet ISON’s inner coma. Credit: Remanzacco Observatory/Ernest Guido, Nick Howes and Martino Nicolini.

Here’s an enlargement of additional observations by the Remanzacco team, showing the inner coma of Comet ISON. Their explanation:

In the image (above) you can see 3 different elaborations of the ISON inner coma. The first panel on the left is a Larson-Sekanina filter. In the middle panel elaboration with the MCM filter creates an artificial coma, based on the photometry of the original image, and subtract the original image itself in order to highlight the internal zones of different brightness that are very close to the inner core and that would normally be hidden from the diffuse glow of the comet. While the last panel on the right is the elaboration with filter RWM – 1/r theoretical coma subtraction.

Astronomers Capture Images of Herschel Telescope Heading Toward its ‘Graveyard’ Orbit

A pair of astronomers has proved that we haven’t seen the last of the Herschel Space Observatory! On June 17, 2013, engineers for the Herschel space telescope sent final commands to put the decommissioned observatory into its “graveyard” heliocentric parking orbit, after the liquid helium that cooled the observatory’s instruments was depleted. Now, Nick Howes and Ernesto Guido from the Remanzacco Observatory have used the 2 meter Faulkes Telescope North in Hawaii to take a picture of the infrared observatory as it is moving away from its orbit around the L2 LaGrange Point where it spent the entirety of its mission.

Howes told Universe Today that their observations not only improve future chances of it being seen, but also will help astronomers in that the observatory won’t be mistaken for a new asteroid.

“We saw a potential issue here,” Howes said via email, “as the spacecraft would be in a slow tumble, receding from its stable L2 orbit, subjected to solar radiation pressure. And as ESA’s ground stations were no longer communicating with it, so we wanted to basically check the orbits and make sure that for future science, it was not mistakenly detected as an asteroid.”

The Herschel Telescope was imaged by Nick Howes and Ernesto Guido using Faulkes Telescope North in Haleakala, Hawaii, on June 26, 2013.
The Herschel Telescope was imaged by Nick Howes and Ernesto Guido using Faulkes Telescope North in Haleakala, Hawaii, on June 26, 2013.

When Howes and Guido realized that JPL’s Horizons coordinate system — which generates coordinates for objects in space like Herschel — would be suspending coordinates for the observatory from the end of June, they quickly and urgently used the information they had on Herschel’s movements to make their observations.

“The ephemeris from JPL and the Minor Planet Center varied,” Howes said, “and appeared to show quite different long term positions, so we took the initiative to try to help make sure this orbit was better understood. We knew ESA’s scientists had a pretty good handle on the position, but were perplexed by the variance in the coordinates being generated by the two ephemeris systems”

Radiation pressure and a host of other factors would have and will continue to affect the position of the spacecraft, but with it getting fainter by the day, Howes and Guido made the effort by taking two nights of observations to try and find Herschel as it drifted away from L2.

“Imaging a several metre wide spacecraft at over 2.1 million km from Earth in an orbit that was not quite precise, and a tumbling spacecraft is not an easy task, at the faint magnitudes it theoretically could have been at, ” said Guido, who helps manage the Remanzacco Observatory in Italy. “And while we found what we thought could be it on the first night, our calculations would need to be verified by observing it on a second night to validate that it was indeed Herschel.”

The orbit of Herschel during its mission. Credit: ESA.
The orbit of Herschel during its mission. Credit: ESA.

Howes, who’d written about Herschel when working in science communications for ESA, contacted several of the mission team via emails, who gave valuable advice on the effects of the final orbital burn.

“We effectively had three possible locations to hunt in,” Howes said, “and luckily, as rain at one of our telescope sites stopped our plans for the third run, and nothing showed up in our first coordinates, we managed to get it in the second set of images, exactly where we thought it could be, with the correct data for its motion, position angle and other orbital characteristics. Ernesto worked on the data reduction for these images, and after about 30 minutes of frantic discussion, said ‘I think I’ve found it.’”

The team have filed their data with the Minor Planet Center, and have worked closely with astronomers at Kitt Peak, who also imaged the Observatory, further refining the observing arc, passing their coordinates even on to astronomers in Chile, with significantly larger telescopes to get even more images of it.

The Faulkes Telescope Project is based at the University of South Wales, and the telescopes are operated by the Las Cumbres Observatory Global Telescope Network. The telescopes are also used for educational purposes, and schools using the Faulkes Telescope will be able to follow Herschel as she leaves her orbit to wander around the Sun. It will return to our neck of the Solar System around 2027/2028 (astrometry measured by Howes and Guido is factoring in radiation pressure, so the values are approximate), when it will return at around magnitude 21.7.

“We’ve engaged schools in this project as it’s great for learning astrometry, and photometry as well as a fun thing to do, and they’ve also been making animations from our data.”

Howes and Guido hope that the updated information will help others keep an eye on the telescope in the future. “It’s been an exciting week, and we wanted to say thank you to ESA for building such a magnificent telescope,” Howes said. “We just wanted to give it a good send off!”

Astronomer Giovanni Sostero, 1964-2012

Giovanni Sostero, 1964-2012. Image courtesy of the Remanzacco Observatory

With sadness, we learned of the death of amateur astronomer Giovanni Sostero last Friday. Universe Today readers will remember Giovanni as a member of the team of astronomers from the Remanzacco Observatory in Italy, whose outstanding work we frequently feature, especially for their observations of comets, asteroids and supernovae. Tragically, Giovanni was just 48 years old and passed away due to complications following a heart attack.

Giovanni was credited with the discovery of several supernovae, and Asteroid 9878 Sostero (1994 FQ) was named after him to honor his astronomical observations. His work was published in several professional astronomical journals and he was a leading and active member of the Associazione Friulana di Astronomia e Meteorologia, based in Friuli, Italy, and was an honorary member of the Astronomical Observatory of Visnjan in Croatia.

Not only did he work hard behind the eyepiece, but he was very active in public outreach about astronomy.

Giovanni’s closest colleagues were his co-astronomers at the Remanzacco Observatory, Ernesto Guido and Nick Howes. Both have graciously penned their remembrances of Giovanni for Universe Today, so please read on to get a true sense of not only how much Giovanni contributed to the world of astronomy, but also his unique personality. He will be greatly missed and we at Universe Today send our condolences to his family and friends.

From Ernesto Guido
Italy:

Over the past eight years, I had the privilege to undertake astronomy projects working closely with Giovanni Sostero. In fact our collaboration and friendship started at the beginning of 2005. At that time Giovanni was already an accomplished amateur astronomer known both nationally and internationally for its expertise, his scientific rigor and for his overwhelming passion for the comets. For my part, I was then moving the first steps as a young amateur astronomer. Eager to do my part, I dearly wanted to be a part of any team with the best names in contemporary astronomy and for these past 8 years was lucky enough to meet Giovanni along my own personal road.

Born in Udine in 1964, Giovanni was for many years President of the Italian astronomy association AFAM of Remanzacco. He was coordinator of the comet section of UAI (Unione Astrofili Italiani) and one of the leaders of CARA Team (Comet AfRho Research Group). He began his collaboration with the UAI Comet section in 1983 (the year of perihelion passage of 22P/Kopff), and subsequently participated to the International Halley Watch watching the 21P/Giacobini-Zinner and 1P/Halley.

His passing is a great loss for all those who loved him and for the world of astronomy. It is impossible to list here the many discoveries, articles and all contributions he made to the world of professional and amateur astronomy, not only to the field of comets.

One need only recall the 11 supernovae discovered by him in the years 2005-2009, a nova in the galaxy M31 in 2000 (the first discovery by amateur means) together with dear friends of Remanzacco Observatory, the discovery of dozens of asteroids and the observation and follow-up of hundreds of comets and Near Earth Asteroids (NEOs). In the last two years, we had embarked on a new partnership and friendship with the English amateur astronomer Nick Howes. We both agreed that we could get wonderful results together with Nick, but a cruel fate took Giovanni away too soon.

It will be impossible to fill the void he leaves, but the best way to honour him will be to continue on the road we had taken together to try shed some more light via our research on the objects he loved so much, the comets.

Giovanni was a great person, a great astronomer and the best of friends. I will miss him immensely!

Comet Garradd (C/2009 PI) as it passes by the globular cluster M92 in the constellation Hercules, was taken remotely from the Tzek Maun Observatory in New Mexico by the team of Giovanni Sostero, Ernest Guido and Nick Howes.

From Nick Howes,
UK:

I first encountered the remarkable Giovanni Sostero and his long time friend and collaborator Ernesto Guido in 2010, after the successful imaging of Comet 103P in support of the NASA AOP program. I was using the 2m Faulkes Telescopes a lot for cometary imaging, and after we got chatting, onlline, we decided to collaborate as a team working on both the Faulkes scopes and also their own observatory in Italy for ongoing cometary research projects. His knowledge of the skies was truly staggering, as was his knowledge of comets in general. I learnt so much from working with him, a kind, generous and informative individual with a phenomenal sense of humour.

You only have to look at the over 1880 NASA ADS citations he has for his work, combined with several supernova discoveries and an asteroid named after him, to realise that not only the amateur community, of which we are all proud members, but the professional astronomical community, respected and loved this man.

The reaction on the social media sites and comet mailing lists has been universal, one of shock and deep sadness, that we have lost such a wonderful mind, and such a great person. I valued his friendship greatly, his mentoring, his help and passion for astronomy were invaluable, and words can’t express the deep sadness I think we all feel. The team at Faulkes…well we’re all in deep shock… as we had great plans for this year, with the ESA comet 67P mission project, our plans to track comet ISON and comet Panstarrs L4, but Ernesto and I will continue, and aim to honour his name with many great new discoveries.

You can read more words of condolences for Giovanni here.

Latest Images of Comet Elenin: Not Much to See

[/caption]

A series of images of Comet Elenin taken on October 21, 2011 might show an “extremely faint and diffuse blob of light,” according to Ernesto Guido, Giovanni Sostero and Nick Howes, who used two remote telescopes in New Mexico to image again the field of view where Comet Elenin should be. Their first observing session with a 10” reflector showed no obvious moving object in the telescope’s field of view, while the second session a 0.1 meter refractor showed a hint of something moving in the background when images taken 2 hours apart were “blinked,” but interference from moonlight hasn’t been ruled out.

The trio of astronomers encourage other observers to confirm or refute this view with additional observations/images. “We suggest the use of wide-field, fast focal ratio scopes, possibly under very good sky conditions,” they said.

You can see more at the Remanzacco Observatory website, including a video of the “blinking.”

Close Approach: Images and Animations of Asteroid 2011 MD

[/caption]

Today, Monday June 27 at about 17:00 UT, asteroid designated as 2011 MD will pass only 12,300 kilometers (7,600 miles) above the Earth’s surface. Here are some images and an animation of the asteroid’s close approach taken around 09:30 UT taken by Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South through a 2.0-m f/10.0 Ritchey-Chretien and a CCD. The trio of astronomers say that at the time these images were taken, the asteroid had a magnitude of about 14.5. At the moment of its close approach, 2011 MD will be bright as magnitude ~11.8.

The animation above shows the object’s movement in the sky. Each image was 20-second exposure.

See more below from Guido, Howes and Sostero.

Below is a single 20-second exposure also taken by the 2 meter telescope at Faulkes Telescope South, and just below that is another image using a RGB filter.

2011 MD on Monday, June 27, 2011 at 09:30 UTC. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South
2011 MD on Monday, June 27, 2011 at 09:30 UTC with RBG filter. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South.

Some early observers have suggested that 2011 MD — which is only 5-20 meters in diameter — could possibly be a piece of space junk, such as a rocket booster. However, additional observations and further calculations show that this asteroid could not have been close enough to Earth any time during the space age to have started off as a rocket booster.

Trajectory of 2011 MD from the general direction of the Sun. Credit: NASA

Thanks to Ernesto Guido, Nick Howes and Giovanni Sostero for sharing their image with Universe Today. See more of their work, as well as more information about asteroid 2011 MD at their Remanzacco Observatory website. See here for more information on the Faulkes Telescope.

Again, scientists at NASA’s Asteroid Watch program at JPL say there is no danger of the asteroid hitting Earth. “There is no chance that 2011 MD will hit Earth but scientists will use the close pass as opportunity to study it w/ radar observations,” they said on the the @AsteriodWatch Twitter feed. “Asteroid 2011 MD measures about 10 meters. Stony asteroids less than 25 m would break up in Earth’s atmosphere and not cause ground damage.”