Planetary nebula are some of nature’s most stunning visual displays. The name is confusing since they’re the remains of stars, not planets. But that doesn’t detract from their status as objects of captivating beauty and intense scientific study.
Continue reading “See the Southern Ring Nebula in 3D”What Happens to Solar Systems When Stars Become White Dwarfs?
In a couple billion years, our Sun will be unrecognizable. It will swell up and become a red giant, then shrink again and become a white dwarf. The inner planets aren’t expected to survive all the mayhem these transitions unleash, but what will happen to them? What will happen to the outer planets?
Continue reading “What Happens to Solar Systems When Stars Become White Dwarfs?”Red Giants Offer a New Way to Measure Distance in the Universe
For nearly three decades now, it’s been clear that the expansion of the Universe is speeding up. Some unknown quantity, dramatically dubbed ‘dark energy’, is pushing the Universe apart. But the rate at which the Universe’s expansion is increasing – called the Hubble Constant – hasn’t yet been nailed down to a single number.
Not for lack of trying.
Continue reading “Red Giants Offer a New Way to Measure Distance in the Universe”Slimmed Down Red Giants Had Their Mass Stolen By a Companion Star
Millions of stars that can grow up to 620 million miles in diameter, known as ‘red giants,’ exist in our galaxy, but it has been speculated for a while that there are some that are possibly much smaller. Now a team of astronomers at the University of Sydney have discovered several in this category and have published their findings in the journal Nature Astronomy.
Continue reading “Slimmed Down Red Giants Had Their Mass Stolen By a Companion Star”“It’s like finding Wally… we were extremely lucky to find about 40 slimmer red giants, hidden in a sea of normal ones. The slimmer red giants are either smaller in size or less massive than normal red giants.”
PhD candidate Mr Yaguang Li from the University of Sydney, as quoted from the source article.
In the Far Future, Stellar Flybys Will Completely Dismantle the Solar System
Consumption and disintegration.
Next time you want to be the life of the party—if you’re hanging out with cool nerds that is—just drop that phrase into the conversation. And when they look at you quizzically, just say that’s the eventual fate of the Solar System.
Then adjust your cravat and take another sip of your absinthe.
Continue reading “In the Far Future, Stellar Flybys Will Completely Dismantle the Solar System”1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly
Sunspots are common on our Sun. These darker patches are cooler than their surroundings, and they’re caused by spikes in magnetic flux that inhibit convection. Without convection, those areas cool and darken.
Lots of other stars have sunspots, too. But Red Giants (RGs) don’t. Or so astronomers thought.
A new study shows that some RGs do have spots, and that they rotate faster than thought.
Continue reading “1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly”Antares is a supergiant star that would fill the Solar System beyond Mars, but its atmosphere is 12 times bigger than that
Antares, the angry red eye of the constellation Taurus the bull, is a red supergiant star near the end of its life. And astronomers with the VLA and ALMA have realized that it’s much, much bigger than we ever imagined.
Continue reading “Antares is a supergiant star that would fill the Solar System beyond Mars, but its atmosphere is 12 times bigger than that”We Know We’re Made of Stardust. But Did it Come From Red Giants?
We’ve all heard this one: when you drink a glass of water, that water has already been through a bunch of other people’s digestive tracts. Maybe Attila the Hun’s or Vlad the Impaler’s; maybe even a Tyrannosaurus Rex’s.
Well, the same thing is true of stars and matter. All the matter we see around us here on Earth, even our own bodies, has gone through at least one cycle of stellar birth and death, maybe more. But which type of star?
That’s what a team of researchers at ETH Zurich (Ecole polytechnique federale de Zurich) wanted to know.
Continue reading “We Know We’re Made of Stardust. But Did it Come From Red Giants?”This Star Has Reached the End of its Life
About 10,000 light years away, in the constellation Centaurus, is a planetary nebula called NGC 5307. A planetary nebula is the remnant of a star like our Sun, when it has reached what can be described as the end of its life. This Hubble image of NGC 5307 not only makes you wonder about the star’s past, it makes you ponder the future of our very own Sun.
Continue reading “This Star Has Reached the End of its Life”Why Doesn’t Earth Have Rings?
Before we really get started on today’s episode, I’d like to share a bunch of really cool pictures created by my friend Kevin Gill. Kevin’s a computer programmer, 3-D animator and works on climate science data for NASA.
And in his spare time, he uses his skills to help him imagine what the Universe could look like. For example, he’s mapped out what a future terraformed Mars might look like based on elevation maps, or rendered moons disturbing Saturn’s rings with their gravity.
But one of my favorite sets of images that Kevin did were these. What would it look like if Earth had rings? Kevin and his wife went to a few cool locations, took some landscape pictures, and then Kevin did the calculations for what it would look like if Earth had a set of rings like Saturn.
And let me tell you, Earth would be so much better. At least you’d think so, but actually, it might also suck.
Last time I checked, we don’t have rings like this. In fact, we don’t have any rings at all.
Why not? Considering the fact that Saturn, Jupiter, Uranus and Neptune all have rings, don’t we deserve at least something?
Did we ever have rings in the past, or will we in the future? What’s it going to take for us to join the ring club? Short answer, an apocalypse.
Before we get into the inevitable discussion of death and devastation, let’s talk a bit about rings.
Saturn is the big showboat, with its fancy rings. They’re made of water ice, with chunks as big as a mountain, or as small as a piece of sand. Astronomers have been arguing about where they came from and how old they are, but the current consensus – sort of – is that the rings are almost as ancient as Saturn itself: billions of years old. And yet, some process is weathering the rings, grinding the particles so they appear much younger.
Jupiter’s rings are much fainter, and we didn’t even know about them until 1979, when the Voyager spacecraft made their flybys. The rings seem to be created by dust blown off into space by impacts on the planet’s moons.
Hey, we’ve got a moon, that’s a sign.
The rings around Uranus are bigger and more complex than Jupiter’s rings, but not as substantial as Saturn’s. They’re much younger, perhaps only 600 million years old, and appear to have been caused by two moons crashing into each other, long ago.
Again, another sign. We still have the potential for stuff to crash around us.
The rings around Neptune are far dustier than any of the other ring systems, and much younger than the Solar System. And like the rings around Uranus, they were probably formed when two or more of its moons collided together.
Now what about our own prospects for rings?
The problem with icy rings is that the Earth orbits too closely to the Sun. There’s a specific point in the Solar System known as the “frost line” or “snow line”. This is the point in the Solar System where deposits of ice could have survived for long periods of time. Any closer and the radiation from the Sun sublimates the ice away.
This point is actually located about 5 astronomical units away from the Sun, in the asteroid belt. Mars is much closer, so it’s very dry, while Jupiter is beyond the frost line, and its moons have plenty of water ice.
The Earth is a mere 1 AU from the Sun. That’s the very definition of an astronomical unit, which means it’s well within the frost line. The Earth itself can maintain water because the planet’s magnetosphere acts like a shield against the solar wind. But the Moon is bone dry (except for the permanently shadowed craters at its poles).
And if there was an icy ring system around the Earth, the solar wind would have blasted it away long ago.
Instead, let’s look at another kind of ring we can have. One made of rock and dust, containing death and sorrow, from a pulverized asteroid or moon. In fact, billions of years ago, we definitely had a ring when a Mars-sized planet crashed into the Earth and spewed out a massive ring of debris. This debris collected together into the Moon we know today. That impact turned the Earth’s surface inside out. It was all volcanoes, everywhere, all the time.
It’s also possible we had a second moon in the ancient past, which collided with our current Moon. That would have generated an all new ring of material for millions of years until it was recaptured by the Moon, kicked out of orbit, or fell down onto the Earth.
It’s that “fell down onto Earth” part that’s apocalyptic. As mountains of ring material entered the Earth’s atmosphere, it would increase the temperature, baking and boiling away any life that couldn’t burrow deep underground.
It’s kind of like the book Seveneves, which you should totally read if you haven’t already. It talks about what we would see if the Moon broke apart into a ring, and the terrible terrible thing that happens next.
If Earth did get a set of rings, they’d be pretty, but they’d also be a huge pain for astronomers. As you saw in Kevin’s original pictures, the rings take up a huge chunk of the sky for most observers. The farther north or south you go, the more dramatically the rings will ruin your view. Only if you were right at the equator, you’d have a thin line, which would be borderline acceptable.
Furthermore, the rings themselves would be incredibly reflective, and completely ruin the whole concept of dark skies. You know how the Moon sucks for astronomy? Rings would be way way worse.
Finally, rings would interfere with our ability to launch spacecraft and maintain satellites. It depends on how far they extend, but we wouldn’t be able to have any satellites in that region or cross the ring plane. Oh, and that fiery death apocalypse I mentioned earlier.
We know that the Moon is drifting away from the Earth right now thanks to the conservation of angular momentum. But in the distant future, billions of years from now, there might be a scenario that turns everything around.
As you know, when it runs out of fuel in its core, the Sun is going to bloat up as a red giant, consuming Mercury and Venus. Scientists are on the fence about Earth. Some think that Earth will be fine. The Sun will blast off its outer layers, but not actually envelop Earth. Others think that at the Sun’s largest point, we’ll be orbiting within the outer atmosphere of the Sun. Ouch, that’s hot.
The orbiting Moon will experience drag as it goes around the Earth, slowing down its orbital velocity, and causing it to spiral inward. Once it reaches the Roche Limit of the Earth, about 9,500 km, our planet’s gravity will tear the Moon apart into a ring. The chunks in the ring will also experience drag in the solar atmosphere and continue to spiral inward until they crash into the planet.
That would be considered a very bad day, if it wasn’t for the fact that we were already living inside the atmosphere of the Sun. No amount of terraforming will fix that.
Sadly, the Earth doesn’t have rings like Saturn, and it probably never did. It might have had rings of rock and dust for periods, but they weren’t that majestic to look at. In fact, seeing rings around the planet would mean we’d lost a moon, and our planet was about go through a period of bombardment. I’ll pass.