Bad News For Proxima b: An Earth-Like Atmosphere Might Not Survive There

Back in of August of 2016, the existence of an Earth-like planet right next door to our Solar System was confirmed. To make matters even more exciting, it was confirmed that this planet orbits within its star’s habitable zone too. Since that time, astronomers and exoplanet-hunters have been busy trying to determine all they can about this rocky planet, known as Proxima b. Foremost on everyone’s mind has been just how likely it is to be habitable.

However, numerous studies have emerged since that time that indicate that Proxima b, given the fact that it orbits an M-type (red dwarf), would have a hard time supporting life. This was certainly the conclusion reached in a new study led by researchers from NASA’s Goddard Space Flight Center. As they showed, a planet like Proxima b would not be able to retain an Earth-like atmosphere for very long.

Red dwarf stars are the most common in the Universe, accounting for an estimated 70% of stars in our galaxy alone. As such, astronomers are naturally interested in knowing just how likely they are at supporting habitable planets. And given the distance between our Solar System and Proxima Centauri – 4.246 light years – Proxima b is considered ideal for studying the habitability of red dwarf star systems.

This infographic compares the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Credit: Pale Red Dot

On top of all that, the fact that Proxima b is believed to be similar in size and composition to Earth makes it an especially appealing target for research. The study was led by Dr. Katherine Garcia-Sage of NASA’s Goddard Space Flight Center and the Catholic University of America in Washington, DC. As she told Universe Today via email:

“So far, not many Earth-sized exoplanets have been found orbiting in the temperate zone of their star. That doesn’t mean they don’t exist – larger planets are found more often because they are easier to detect – but Proxima b is of interest because it’s not only Earth-sized and at the right distance from its star, but it’s also orbiting the closest star to our Solar System.”

For the sake of determining if Proxima b could be habitable, the research team sought to address the chief concerns facing rocky planets that orbit red dwarf stars. These include the planet’s distance from its stars, the variability of red dwarfs, and the presence (or absence) of magnetic fields. Distance is of particular importance since habitable zones (aka. temperate zones) around red dwarfs are much closer and tighter.

“Red dwarfs are cooler than our own Sun, so the temperate zone is closer to the star than Earth is to the Sun,” said Dr. Garcia-Sage. “But these stars may be very magnetically active, and being so close to a magnetically active star means that these planets are in a very different space environment than what the Earth experiences. At those distances from the star, the ultraviolet and x-ray radiation may be quite large. The stellar wind may be stronger. There could be stellar flares and energetic particles from the star that ionize and heat the upper atmosphere.”

At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA

In addition, red dwarf stars are known for being unstable and variable in nature when compared to our Sun. As such, planets orbiting in close proximity would have to contend with flare ups and intense solar wind, which could gradually strip away their atmospheres. This raises another important aspect of exoplanet habitability research, which is the presence of magnetic fields.

To put it simply, Earth’s atmosphere is protected by a magnetic field that is driven by a dynamo effect in its outer core. This “magnetosphere” has prevented solar wind from stripping our atmosphere away, thus giving life a chance to emerge and evolve. In contrast, Mars lost its magnetosphere roughly 4.2 billion years ago, which led to its atmosphere being depleted and its surface becoming the cold, desiccated place it is today.

To test Proxima b’s potential habitability and capacity to retain liquid surface water, the team therefore assumed the presence of an Earth-like atmosphere and a magnetic field around the planet. They then accounted for the enhanced radiation coming from Proxima b. This was provided by the Harvard Smithsonian Center for Astrophysics (CfA), where researchers determined the ultraviolet and x-ray spectrum of Proxima Centauri for this project.

From all of this, they constructed models that began to calculate the rate of atmospheric loss, using Earth’s atmosphere as a template. As Dr. Garcia-Sage explained:

“At Earth, the upper atmosphere is ionized and heated by ultraviolet and x-ray radiation from the Sun. Some of these ions and electrons escape from the upper atmosphere at the north and south poles. We have a model that calculates how fast the upper atmosphere is lost through these processes (it’s not very fast at Earth)… We then used that radiation as the input for our model and calculated a range of possible escape rates for Proxima Centauri b, based on varying levels of magnetic activity.”

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

What they found was not very encouraging. In essence, Proxima b would not be able to retain an Earth-like atmosphere when subjected to Proxima Centauri’s intense radiation, even with the presence of a magnetic field. This means that unless Proxima b has had a very different kind of atmospheric history than Earth, it is most likely a lifeless ball of rock.

However, as Dr. Garcia-Sage put it, there are other factors to consider which their study simply can’t account for:

“We found that atmospheric losses are much stronger than they are at Earth, and the for high levels of magnetic activity that we expect at Proxima b, the escape rate was fast enough that an entire Earth-like atmosphere could be lost to space. That doesn’t take into account other things like volcanic activity or impacts with comets that might be able to replenish the atmosphere, but it does mean that when we’re trying to understand what processes shaped the atmosphere of Proxima b, we have to take into account the magnetic activity of the star. And understanding the atmosphere is an important part of understanding whether liquid water could exist on the surface of the planet and whether life could have evolved.”

So it’s not all bad news, but it doesn’t inspire a lot of confidence either. Unless Proxima b is a volcanically-active planet and subject to a lot of cometary impacts, it is not likely be temperate, water-bearing world. Most likely, its climate will be analogous to Mars – cold, dry, and with water existing mostly in the form of ice. And as for indigenous life emerging there, that’s not too likely either.

These and other recent studies have painted a rather bleak picture about the habitability of red dwarf star systems. Given that these are the most common types of stars in the known Universe, the statistical likelihood of finding a habitable planet beyond our Solar System appears to be dropping. Not exactly good news at all for those hoping that life will be found out there within their lifetimes!

But it is important to remember that what we can say definitely at this point about extra-solar planets is limited. In the coming years and decades, next-generation missions – like the James Webb Space Telescope (JWST) and the Transiting Exoplanet Survey Satellite (TESS) –  are sure to paint a more detailed picture. In the meantime, there’s still plenty of stars in the Universe, even if most of them are extremely far away!

Further Reading: The Astrophysical Journal Letters

Earth-Sized Planet Takes Just Four Hours to Orbit its Star

The Kepler space observatory has made some interesting finds since it began its mission back in March of 2009. Even after the mission suffered the loss of two reaction wheels, it has continued to make discoveries as part of its K2 mission. All told, the Kepler and K2 missions have detected a total of 5,106 planetary candidates, and confirmed the existence of 2,493 planets.

One of the latest finds made using Kepler is EPIC 228813918 b, a terrestrial (i.e. rocky) planet that orbits a red dwarf star some 264 to 355 light years from Earth. This discovery raises some interesting questions, as it is the second time that a planet with an ultra-short orbital period – it completes a single orbit in just 4 hours and 20 minutes – has been found orbiting a red dwarf star.

The study, which was recently published online, was conducted by an international team of scientists who hail from institutions ranging from the Massachusetts Institute of Technology (MIT), the California Institute of Technology (Caltech), the Tokyo Institute of Technology, and the Institute of Astrophysics of the Canary Islands (IAC) to observatories and universities from all around the world.

NASA’s Kepler space telescope was the first agency mission capable of detecting Earth-size planets. Credit: NASA/Wendy Stenzel

As the team indicated in their study, the detection of this exoplanet was made thanks to data collected by numerous instruments. This included spectrographic data from the 8.2-m Subaru telescope and the 10-m Keck I telescope (both of which are located on Mauna Kea, Hawaii) and the Nordic Optical Telescope (NOT) at the Roque de los Muchachos Observatory in La Palma, Spain.

This was combined with speckle imaging from the 3.5-m WIYN telescope at the Kitt Peak National Observatory in Arizona, photometry from the NASA’s K2 mission, and archival information of the star that goes back over 60 years. After eliminating any other possible explanations – such as an eclipsing binary (EB) – they not only confirmed the orbital period of the planet, but also provided constrains on its mass and size. As they wrote:

“Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 [Earth radii], and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M and radius 0.442 ± 0.044 R.”
This orbital period – four hours and 20 minutes – is the second shortest of any exoplanet discovered to date, being just 4 minutes longer than that of KOI 1843.03, which also orbits an M-type (red dwarf) star. It is also the latest in a long line of recently-discovered exoplanets that complete a single orbit of their stars in less than a day. Planets belonging to this group are known as ultra-short-period (USP) planets, of which Kepler has found a total of 106.

Archival images of the star EPIC 228813918, demonstrating its proper motion over nearly six decades – from (i) 1954, (ii) 1992, and (iii) 2012. Credit: Smith et al.

However, what is perhaps most surprising about this find is just how massive it is. Though they didn’t measure the planet’s mass directly, their constraints indicate that the exoplanet has an upper mass limit of 0.7 Jupiter masses – which works out to over 222 Earth masses. And yet, the planet manages to pack this gas giant-like mass into a radius that is 0.80 to 0.98 times that of Earth.

The reason for this, they indicate, has to do with the planet’s apparent composition, which is particularly metal-rich:

“This leads to a constraint on the composition, assuming an iron core and a silicate mantle. We determine the minimum iron mass fraction to be 0.525 ± 0.075 (cf. 0.7 for KOI 1843.03), which is greater than that of Earth, Venus or Mars, but smaller than that of Mercury (approximately 0.38, 0.35, 0.26, and 0.68, respectively; Reynolds & Summers 1969).”

Ultimately, the discovery of this planet is significant for a number of reasons. On the one hand, the team indicated that the constraints their study placed on the planet’s composition could prove useful in helping to understand how our own Solar planets came to be.

“Discovering and characterizing extreme systems, such as USP planets like EPIC 228813918 b, is important as they offer constraints for planet formation theories,” they conclude. “Furthermore, they allow us to begin to constrain their interior structure – and potentially that of longer-period planets too, if they are shown to be a single population of objects.”

An artist’s depiction of extra-solar planets transiting an M-type (red dwarf) star. Credit: NASA/ESA/STScl

On the other hand, the study raises some interesting questions about USP planets – for instance, why the two shortest-period planets were both found orbiting red dwarf stars. A possible explanations, they claim, is that short-period planets could have longer lifetimes around M-dwarfs since their orbital decay would likely be much slower. However, they are quick to caution against making any tentative conclusions before more research is conducted.

In the future, the team hopes to conduct measurements of the planet’s mass using the radial velocity method. This would likely involve a next-generation high-resolution spectrograph, like the Infrared Doppler (IFD) instrument or the CARMENES instrument – which are currently being built for the Subaru Telescope and the Calar Alto Observatory (respectively) to assist in the hunt for exoplanets around red dwarf stars.

One thing is clear though. This latest find is just another indication that red dwarf stars are where exoplanet-hunters will need to be focusing their efforts in the coming years and decades. These low mass, ultra-cool and low-luminosity stars are where some of the most interesting and extreme finds are being made. And what we stand to learn by studying them promises to be most profound!

Further Reading: arXiv

Strange Radio Signals Detected from a Nearby Star

Astronomers have been listening to radio waves from space for decades. In addition to being a proven means of studying stars, galaxies, quasars and other celestial objects, radio astronomy is one of the main ways in which scientists have searched for signs of extra-terrestrial intelligence (ETI). And while nothing definitive has been found to date, there have been a number of incidents that have raised hopes of finding an “alien signal”.

In the most recent case, scientists from the Arecido Observatory recently announced the detection of a strange radio signal coming from Ross 128 – a red dwarf star system located just 11 light-years from Earth. As always, this has fueled speculation that the signal could be evidence of an extra-terrestrial civilization, while the scientific community has urged the public not to get their hopes up.

The discovery was part of a campaign being conducted by Abel Méndez – the director of the Planetary Habitability Laboratory (PHL) in Peurto Rico – and Jorge Zuluaga of the Faculty of Exact and Natural Sciences at the University of Antioquia, Colombia. Inspired by the recent discoveries around Proxima Centauri and TRAPPIST-1, the GJ 436 campaign relied on data from Arecibo Observatory to look for signs of exoplanets around nearby red dwarf stars.

Arecibo Observatory, the world’s biggest single dish radio telescope, was and is still being used to image comet 45P/H-M-P. Courtesy of the NAIC – Arecibo Observatory, a facility of the NSF

In the course of looking at data from stars systems like Gliese 436, Ross 128, Wolf 359, HD 95735, BD +202465, V* RY Sex, and K2-18 – which was gathered between April and May of 2017 – they noticed something rather interesting. Basically, the data indicated that an unexplained radio signal was coming from Ross 128. As Dr. Abel Mendez described in a blog post on the PHL website: 

“Two weeks after these observations, we realized that there were some very peculiar signals in the 10-minute dynamic spectrum that we obtained from Ross 128 (GJ 447), observed May 12 at 8:53 PM AST (2017/05/13 00:53:55 UTC). The signals consisted of broadband quasi-periodic non-polarized pulses with very strong dispersion-like features. We believe that the signals are not local radio frequency interferences (RFI) since they are unique to Ross 128 and observations of other stars immediately before and after did not show anything similar.”

After first noticing this signal on Saturday, May 13th at 8:53 p.m., scientists from the Arecibo Observatory and astronomers from the Search for Extra-Terrestrial Intelligence (SETI) Institute teamed up to conduct a follow-up study of the star. This was performed on Sunday, July 16th, using SETI’s Allen Telescope Array and the National Radio Astronomy Observatory‘s (NRAO) Green Bank Telescope.

They also conducted observations of Barnard’s star on that same day to see if they could note similar behavior coming from this star system. This was done in collaboration with the Red Dots project, a European Southern Observatory (ESO) campaign that is also committed to finding exoplanets around red dwarf stars. This program is the successor to the ESO’s Pale Red Dot campaign, which was responsible for discovering Proxima b last summer.

Images of the star systems examined by the GJ 436 Campaign. Credit: PHL/Abel Méndez 

As of Monday night (July 17th), Méndez updated his PHL blog post to announced that with the help of SETI Berkeley with the Green Bank Telescope, that they had successfully observed Ross 128 for the second time. The data from these observatories is currently being collected and processed, and the results are expected to be announced by the end of the week.

In the meantime, scientists have come up with several possible explanations for what might be causing the signal. As Méndez indicated, there are three major possibilities that he and his colleagues are considering:

“[T]hey could be (1) emissions from Ross 128 similar to Type II solar flares, (2) emissions from another object in the field of view of Ross 128, or just (3) burst from a high orbit satellite since low orbit satellites are quick to move out of the field of view. The signals are probably too dim for other radio telescopes in the world and FAST is currently under calibration.”

Unfortunately, each of these possibilities have their own drawbacks. In the case of a Type II solar flare, these are known to occur at much lower frequencies, and the dispersion of this signal appears to be inconsistent with this kind of activity. In the case of it possibly coming from another object, no objects (planets or satellites) have been detected within Ross 128’s field of view to date, thus making this unlikely as well.

The stars currently being examined as part of the GJ 436 campaign. Credit: PHL/Abel Méndez

Hence, the team has something of a mystery on their hands, and hopes that further observations will allow them to place further constrains on what the cause of the signal could be. “[W]e might clarify soon the nature of its radio emissions, but there are no guarantees,” wrote Méndez. “Results from our observations will be presented later that week. I have a Piña Colada ready to celebrate if the signals result to be astronomical in nature.”

And just to be fair, Méndez also addressed the possibility that the signal could be artificial in nature – i.e. evidence of an alien civilization. “In case you are wondering,” he wrote, “the recurrent aliens hypothesis is at the bottom of many other better explanations.” Sorry, alien-hunters. Like the rest of us, you’ll just have to wait and see what can be made of this signal.

Further Reading: AFP, PHL

Even Though Red Dwarfs Have Long Lasting Habitable Zones, They’d be Brutal to Life

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech

Ever since scientists confirmed the existence of seven terrestrial planets orbiting TRAPPIST-1, this system has been a focal point of interest for astronomers. Given its proximity to Earth (just 39.5 light-years light-years away), and the fact that three of its planets orbit within the star’s “Goldilocks Zone“, this system has been an ideal location for learning more about the potential habitability of red dwarf stars systems.

This is especially important since the majority of stars in our galaxy are red dwarfs (aka. M-type dwarf stars). Unfortunately, not all of the research has been reassuring. For example, two recent studies performed by two separate teams from Harvard-Smithsonian Center for Astrophysics (CfA) indicate that the odds finding life in this system are less likely than generally thought.

The first study, titled “Physical Constraints on the Likelihood of Life on Exoplanets“, sought to address how radiation and stellar wind would affect any planets located within TRAPPIST-1s habitable zone. Towards this end, the study’s authors – Professors Manasvi Lingam and Avi Loeb – constructed a model that considered how certain factors would affect conditions on the surface of these planets.

This artist’s concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances. Credits: NASA/JPL-Caltech

This model took into account how the planets distance from their star would affect surface temperatures and atmospheric loss, and how this might affect the changes life would have to emerge over time. As Dr. Loeb told Universe Today via email:

“We considered the erosion of the atmosphere of the planets due to the stellar wind and the role of temperature on ecological and evolutionary processes. The habitable zone around the faint dwarf star TRAPPIST-1 is several tens of times closer in than for the Sun, hence the pressure of the stellar wind is several orders of magnitude higher than on Earth. Since life as we know it requires liquid water and liquid water requires an atmosphere, it is less likely that life exists around TRAPPIST-1 than in the solar system.”

Essentially, Dr. Lingam and Dr, Loeb found that planets in the TRAPPIST-1 system would be barraged by UV radiation with an intensity far greater than that experienced by Earth. This is a well-known hazard when it comes to red dwarf stars, which are variable and unstable when compared to our own Sun. They concluded that compared to Earth, the chances of complex life existing on planets within TRAPPIST-1’s habitable zone were less than 1%.

“We showed that Earth-sized exoplanets in the habitable zone around M-dwarfs display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star,” said Loeb. “This applies to the recently discovered exoplanets in the vicinity of the Sun, Proxima b (the nearest star four light years away) and TRAPPIST-1 (ten times farther), which we find to be several orders of magnitude smaller than that of Earth.”

Three of the TRAPPIST-1 planets – TRAPPIST-1e, f and g – dwell in their star’s so-called “habitable zone. CreditL NASA/JPL

The second study – “The Threatening Environment of the TRAPPIST-1 Planets“, which was recently published in The Astrophysical Journal Letters – was produced by a team from the CfA and the Lowell Center for Space Science and Technology at the University of Massachusetts. Led by Dr. Cecilia Garraffo of the CfA, the team considered another potential threat to life in this system.

Essentially, the team found that TRAPPIST-1, like our Sun, sends streams of charged particles outwards into space – i.e. stellar wind. Within the Solar System, this wind exerts force on the planets and can have the effect of stripping away their atmospheres. Whereas Earth’s atmosphere is protected by its magnetic field, planets like Mars are not – hence why it lost the majority of its atmosphere to space over the course of hundreds of million of years.

As the research team found, when it comes to TRAPPIST-1, this stream exerts a force on its planets that is between 1,000 to 100,000 times greater than what Earth experiences from solar wind. Furthermore, they argue that TRAPPIST-1’s magnetic field is likely connected to the magnetic fields of the planets that orbit around it, which would allow particles from the star to directly flow onto the planet’s atmosphere.

Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech
Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech

In other words, if TRAPPIST-1’s planets do have magnetic fields, they will not afford them any protection. So if the flow of charged particles is strong enough, it could strip these planets’ atmospheres away, thus rendering them uninhabitable. As Garraffo put it:

“The Earth’s magnetic field acts like a shield against the potentially damaging effects of the solar wind. If Earth were much closer to the Sun and subjected to the onslaught of particles like the TRAPPIST-1 star delivers, our planetary shield would fail pretty quickly.”

As you can imagine, this is not exactly good news for those who were hoping that the TRAPPIST-1 system would hold the first evidence of life beyond our Solar System. Between the fact that its planets orbit a star that emits varying degrees of intense radiation, and the proximity its seven planets have to the star itself, the odds of life emerging on any planet within it’s “habitable zone” are not significant.

The findings of the second study are particularly significant in light of other recent studies. In the past, Prof. Loeb and a team from the University of Chicago have both addressed the possibility that the TRAPPIST-1 system’s seven planets – which are relatively close together – are well-suited to lithopanspermia. In short, they determined that given their close proximity to each other, bacteria could be transferred from one planet to the next via asteroids.

An artist’s depiction of planets transiting a red dwarf star in the TRAPPIST-1 System. Credit: NASA/ESA/STScl

But if the proximity of these planets also means that they are unlikely to retain their atmospheres in the face of stellar wind, the likelihood of lithopanspermia may be a moot point. However, before anyone gets to thinking that this is bad news as far as the hunt for life goes, it is important to note that this study does not rule out the possibility of life emerging in all red dwarf star systems.

As Dr. Jeremy Drake – a senior astrophysicist from the CfA and one of Garraffo’s co-authors – indicated, the results of their study simply mean that we need to cast a wide net when searching for life in the Universe.  “We’re definitely not saying people should give up searching for life around red dwarf stars,” he said. “But our work and the work of our colleagues shows we should also target as many stars as possible that are more like the Sun.”

And as Dr. Loeb himself has indicated in the past, red dwarf stars are still the most statistically-likely place to find habitable worlds:

“By surveying the habitability of the Universe throughout cosmic history from the birth of the first stars 30 million years after the Big Bang to the death of the last stars in 10 trillion years, one reaches the conclusion that unless habitability around low-mass stars is suppressed, life is most likely to exist near red dwarf stars like Proxima Centauri or TRAPPIST-1 trillions of years from now.”

If there is one takeaway from these studies, it is that the existence of life within a star system does not simply require planets orbiting within the circumstellar habitable zones. The nature of the stars themselves and the role played by solar wind and magnetic fields also have to be taken into account, since they can mean the difference between a life-bearing planet and a sterile ball of rock!

Further Reading: CfA, International Journal of Astrobiology, The Astrophysical Journal Letters.

Planets Around Stars like Proxima Centauri are Probably Earth-Sized Water Worlds

Proxima b is the subject of a lot interest these days. And why not? As the closest extrasolar planet to our Solar System, it is the best shot we have at studying exoplanets up close in the near future. However, a recent study from the University of Marseilles indicated that, contrary to what many hoped, the planet may be a “water world” – i.e. a planet where up to half of its mass consists of water.

And now, researchers from the University of Bern have taken this analysis a step further. Based on their study, which has been accepted for publication in the journal Astronomy and Astrophysics (A&A), they have determined that the majority planets that form within the habitable zones of a red dwarf star may be water worlds. These findings could have drastic implications for the search for habitable exoplanets around red dwarf stars.

The research was conducted by Dr. Yann Alibert from the National Centers for Competence in Research (NCCR) PlanetS center and Prof. Willy Benz from the Center of Space and Habitability (CSH). Both of these institutions, which are located at the University of Bern, are dedicated to understanding planetary formation and evolution, as well as fostering a dialogue with the public about exoplanet research.

An artist’s depiction of planets transiting a red dwarf star in the TRAPPIST-1 System. Credit: NASA/ESA/STScl
An artist’s depiction of planets transiting a red dwarf star in the TRAPPIST-1 System. Credit: NASA/ESA/STScl

For the sake of their study, titled “Formation and Composition of Planets Around Very Low Mass Stars“, Alibert and Benz carried out the first computer simulation designed to examine the formation of planets around stars that are ten times less massive than our Sun. This involved creating a model that included hundreds of thousands of identical low-mass stars, which were then given orbiting protoplanetary disks of dust and gas.

They then simulated what would happen if planets began to form from the accretion of these disks. For each, they assumed the existence of ten “planetary embryos” (equal to the mass of the Moon) which would grow and migrate over time, giving rise to a system of planets.

Ultimately, what they found was that the planets orbiting within the habitable zone of their parent star would likely to be comparable in size to Earth – ranging from 0.5 to 1.5 times the radius of Earth, with 1 Earth radii being the average. As Dr. Yann Alibert explained to Universe Today via email:

“In the simulations we have considered here, it appears that the majority of the mass (more than 99%) is in the solids. [W]e therefore start with a protoplanetary disk that is made of solids and gas and 10 planetary embryos. The solids in the disk are planetesimals (similar to present day asteriods, around 1 km in size), that can be dry (if they are located in the hot regions of the protoplanetary disk) or wet (around 50% per mass of water ice, if they are in the cold regions of the disk). The planetary embryos are small bodies, whose mass is similar to the moon mass. We then compute how much of the disk solids are capture by the planetary embryos.”

Artist's impression of the view from the most distant exoplanet discovered around the red dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser.
Artist’s impression of the view from the most distant exoplanet discovered around the red dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser.

In addition, the simulations produced some interesting estimates on how much of the planets would consist of water. In 90% of cases, water would account for more than 10% of the planets’ mass. Compare that to Earth, where water covers over 70% of our surface, but makes up only about 0.02% of our planet’s total mass. This would mean that the exoplanets would have very deep oceans and a layer of ice at the bottom, owing to the extreme pressure.

Last, but not least, Alibert and Benze found that if the protoplanetary disks that these planets formed from lived longer than the models suggested, the situation would be even more extreme. All of this could be dire news for those hoping that we might find ET living next door, or that red dwarf stars are the best place to look for intelligent life.

“The fact that many planets are water rich could have potentially very strong (and negative) consequence on the habitability of such planets,” said Dr. Alibert. “In fact, we already showed in other articles (Alibert et al 2013, Kitzmann et al. 2015) that if there is too much water on a planet, this may lead to an unstable climate, and an atmosphere that could be very rich in CO2.”

However, Alibert indicates that these two studies were conducted based on planets that orbit stars similar to our Sun. Red dwarfs are different because they evolve much slower (i.e. the luminosity changes very slowly over time) and they are far more red than our Sun, meaning that the light coming from them has different wavelengths that will interact different with planetary atmospheres.

Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser
Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser

“So, to summarize, it could be that the presence of large amounts of water is not so bad as in the case of solar type stars, but it could also well be that it is even worse for reasons that we do not know,” said Alibert. “Whatever the effect, it is something that is important to study, and we have started working on this subject.”

But regardless of whether or not planets that orbit red dwarf stars are habitable, simulations like this one are still exciting. Aside from offering data on what neighboring planets might look like, they also help us to understand the wide range of possibilities that await us out there. And last, they give us more incentive to actually get out there and explore these worlds up close.

Only be sending missions to other stars can we confirm or deny if they are capable of supporting life. And if in the end, we should find that the most common star in the Universe is unlikely to produce life-giving planets, it only serves to remind us how rare and precious “Earth-like” planets truly are.

Further Reading: University of Bern, arXiv

How Many Planets are There in the Galaxy?

On a clear night, and when light pollution isn’t a serious factor, looking up at the sky is a breathtaking experience. On occasions like these, it is easy to be blown away by the sheer number of stars out there. But of course, what we can see on any given night is merely a fraction of the number of stars that actually exist within our Galaxy.

What is even more astounding is the notion that the majority of these stars have their own system of planets. For some time, astronomers have believed this to be the case, and ongoing research appears to confirm it. And this naturally raises the question, just how many planets are out there? In our galaxy alone, surely, there must be billions!

Number of Planets per Star:

To truly answer that question, we need to crunch some numbers and account for some assumptions. First, despite the discovery of thousands of extra-solar planets, the Solar System is still the only one that we have studied deeply. So it could be that ours possesses more star systems than others, or that our Sun has a fraction of the planets that other stars do.

So let’s assume that the eight planets that exist within our Solar System (not taking into account Dwarf Planets, Centaurs, KBOs and other larger bodies) represent an average. The next step will be to multiply that number by the amount of stars that exist within the Milky Way.

Number of Stars:

To be clear, the actual number of stars in the Milky Way is subject to some dispute. Essentially, astronomers are forced to make estimates due to the fact that we cannot view the Milky Way from the outside. And given that the Milky Way is in the shape of a barred, spiral disc, it is difficult for us to see from one side to the other – thanks to light  interference from its many stars.

As a result, estimates of how many stars there are come down to calculations of our galaxy’s mass, and estimates of how much of that mass is made up of stars. Based on these calculations, scientists estimate that the Milky Way contains between 100 and 400 billion stars (though some think there could be as many as a trillion).

Doing the math, we can then say that the Milky Way galaxy has – on average – between 800 billion and 3.2 trillion planets, with some estimates placing that number as high a 8 trillion! However, in order to determine just how many of them are habitable, we need to consider the number of exoplanets discovered so far for the sake of a sample analysis.

Habitable Exoplanets:

As of October 13th, 2016, astronomers have confirmed the presence of 3,397 exoplanets from a list of 4,696 potential candidates (which were discovered between 2009 and 2015). Some of these planets have been observed directly, in a process known as direct imaging. However, the vast majority have been detected indirectly using the radial velocity or transit method.

In the case of the former, the existence of planets is inferred based on the gravitational influence they have on their parent star. Essentially, astronomers measure how much the star moves back and forth to determine if it has a system of planets and how massive they are. In the case of the transit method, planets are detected when they pass directly in front of their star, causing it to dim. Here, size and mass are estimated based on the level of dimming.

In the course of its mission, the Kepler mission has observed about 150,000 stars, which during its initial four year mission consisted primarily of M-class stars. Also known as red dwarfs, these low-mass, lower-luminosity stars are harder to observe than our own Sun.

Histogram showing the number of exoplanets discovered by year. Credit: NASA Ames/W. Stenzel, Princeton/T. Morton
Histogram showing the number of exoplanets discovered by year. Credit: NASA Ames/W. Stenzel, Princeton/T. Morton

Since that time, Kepler has entered a new phase, also known as the K2 mission. During this phase, which began in November of 2013, Kepler has been shifting its focus to observe more in the way of K- and G-class stars – which are nearly as bright and hot as our Sun.

According to a recent study from NASA Ames Research Center, Kepler found that about 24% of M-class stars may harbor potentially habitable, Earth-size planets (i.e. those that are smaller than 1.6 times the radius of Earth’s). Based upon the number of M-class stars in the galaxy, that alone represents about 10 billion potentially habitable, Earth-like worlds.

Meanwhile, analyses of the K2 phase suggests that about one-quarter of the larger stars surveyed may also have Earth-size planet orbiting within their habitable zones. Taken together, the stars observed by Kepler make up about 70% of those found within the Milky Way. So one can estimate that there are literally tens of billions of potentially habitable planets in our galaxy alone.

In the coming years, new missions will be launching, like the James Webb Space Telescope (JWST) and the Transitting Exoplanet Survey Satellite (TESS). These missions will be able to detect smaller planets orbiting fainter stars, and maybe even determine if there’s life on any of them.

Once these new missions get going, we’ll have better estimates of the size and number of planets that orbit a typical star, and we’ll be able to come up with better estimates of just many planets there are in the galaxy. But until then, the numbers are still encouraging, as they indicate that the chances for extra-terrestrial intelligence are high!

We have written many articles about galaxies for Universe Today. Here’s How Many Stars are there in the Milky Way?, How Many Planets are there in the Solar System?, What are Extra-Solar Planets?, Planets Plentiful Around Abundant Red Dwarf Stars, Study Says, Life After Kepler: Upcoming Exoplanet Missions.

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We have also recorded an episode of Astronomy Cast about galaxies – Episode 97: Galaxies.

Sources:

Discovered: Two New Planets for Kapteyn’s Star

The exoplanet discoveries have been coming fast and furious this week, as astronomers announced a new set of curious worlds this past Monday at the ongoing American Astronomical Society’s 224th Meeting being held in Boston, Massachusetts.

Now, chalk up two more worlds for a famous red dwarf star in our own galactic neck of the woods. An international team of astronomers including five researchers from the Carnegie Institution announced the discovery this week of two exoplanets orbiting Kapteyn’s Star, about 13 light years distant. The discovery was made utilizing data from the HIRES spectrometer at the Keck Observatory in Hawaii, as well as the Planet Finding Spectrometer at the Magellan/Las Campanas Observatory and the European Southern Observatory’s La Silla facility, both located in Chile.

The Carnegie Institution astronomers involved in the discovery were Pamela Arriagada, Ian Thompson, Jeff Crane, Steve Shectman, and Paul Butler. The planets were discerned using radial velocity measurements, a planet-hunting technique which looks for tiny periodic changes in the motion of a star caused by the gravitational tugging of an unseen companion.

“That we can make such precise measurements of such subtle effects is a real technological marvel,” said Jeff Crane of the Carnegie Observatories.

Kapteyn’s Star (pronounced Kapt-I-ne’s Star) was discovered by Dutch astronomer Jacobus Kapteyn during a photographic survey of the southern hemisphere sky in 1898. At the time, it had the highest proper motion of any star known at over 8” arc seconds a year — Kapteyn’s Star moves the diameter of a Full Moon across the sky every 225 years — and held this distinction until the discovery of Barnard’s Star in 1916. About a third the mass of our Sun, Kapteyn’s Star is an M-type red dwarf and is the closest halo star to our own solar system. Such stars are thought to be remnants of an ancient elliptical galaxy that was shredded and subsequently absorbed by our own Milky Way galaxy early on in its history. Its high relative velocity and retrograde orbit identify Kapteyn’s Star as a member of a remnant moving group of stars, the core of which may have been the glorious Omega Centauri star cluster.

The worlds of Kapteyn’s Star are proving to be curious in their own right as well.

“We were surprised to find planets orbiting Kapteyn’s Star,” said lead author Dr. Guillem Anglada-Escude, a former Carnegie post-doc now with the Queen Mary University at London. “Previous data showed some irregular motion, so we were looking for very short period planets when the new signals showed up loud and clear.”

The location of Kapteyn's Star in teh constellation Pictor. Created using Stellarium.
The location of Kapteyn’s Star in the constellation Pictor. Created using Stellarium.

It’s curious that nearby stars such as Kapteyn’s, Teegarden’s and Barnard’s star, though the site of many early controversial claims of exoplanets pre-1990’s, have never joined the ranks of known worlds which currently sits at 1,794 and counting until the discoveries of Kapteyn B and C. Kapteyn’s star is the 25th closest to our own and is located in the southern constellation Pictor. And if the name sounds familiar, that’s because it made our recent list of red dwarf stars for backyard telescopes. Shining at magnitude +8.9, Kapteyn’s star is visible from latitude 40 degrees north southward.

Kapteyn B and C are both suspected to be rocky super-Earths, at a minimum mass of 4.5 and 7 times that of Earth respectively. Kapteyn B orbits its primary once every 48.6 days at 0.168 A.U.s distant (about 40% of Mercury’s distance from our Sun) and Kapteyn C orbits once every 122 days at 0.3 A.U.s distant.

This is really intriguing, as Kapteyn B sits in the habitable zone of its host star. Though cooler than our Sun, the habitable zone of a red dwarf sits much closer in than what we enjoy in our own solar system. And although such worlds may have to contend with world-sterilizing flares, recent studies suggest that atmospheric convection coupled with tidal locking may allow for liquid water to exist on such worlds inside the “snow line”.

And add to this the fact that Kapteyn’s Star is estimated to be 11.5 billion years old, compared with the age of the universe at 13.7 billion years and our own Sun at 4.6 billion years. Miserly red dwarfs measure their future life spans in the trillions of years, far older than the present age of the universe.

A comparison of habitable zones of Sol-like versus Red dwarf stars. Credit: Chewie/Ignacio Javier under a Wikimedia Commons 3.0 license).
A comparison of habitable zones of Sol-like versus red dwarf stars. Credit: Chewie/Ignacio Javier under a Wikimedia Commons 3.0 license).

“Finding a stable planetary system with a potentially habitable planet orbiting one of the very nearest stars in the sky is mind blowing,” said second author and Carnegie postdoctoral researcher Pamela Arriagada. “This is one more piece of evidence that nearly all stars have planets, and that potentially habitable planets in our galaxy are as common as grains of sand on the beach.”

Of course, radial velocity measurements only give you lower mass constraints, as we don’t know the inclination of the orbits of the planets with respect to our line of sight. Still, this exciting discovery could potentially rank as the oldest habitable super-Earth yet discovered, and would make a great follow-up target for the direct imaging efforts or the TESS space telescope set to launch in 2017.

“It does make you wonder what kind of life could have evolved on those planets over such a long time,” added Dr Anglada-Escude. And certainly, the worlds of Kapteyn’s Star have had a much longer span of time for evolution to have taken hold than Earth… an exciting prospect, indeed!

-Read author Alastair Reynolds’ short science fiction piece Sad Kapteyn accompanying this week’s announcement.

Could There be 100 Billion Potentially Habitable Planets in the Galaxy?

As we’ve reported recently, the likelihood of findings habitable Earth-sized worlds just seems to keep getting better and better. But now the latest calculations from a new paper out this week are almost mind-bending. Using what the authors call a “very careful extrapolation” of the rate of small planets observed around M dwarf stars by the Kepler spacecraft, they estimate there could be upwards of 100 billion Earth-sized worlds in the habitable zones of M dwarf or red dwarf stars in our galaxy. And since the population of these stars themselves are estimated to be around 100 billion in the Milky Way, that’s – on average – an Earth-sized world for every red dwarf star in our galaxy.

Whoa.

And since our solar system is surrounded by red dwarfs – very cool, very dim stars not visible to the naked eye (less than a thousandth the brightness of the Sun) — these worlds could be close by, perhaps as close as 7 light-years away.

With the help of astronomer Darin Ragozzine, a postdoctoral associate at the University of Florida who works with the Kepler mission (see our Hangout interview with him last year), let’s take a look back at the recent findings that brought about this latest stunning projection.

Back in February, we reported on the findings from Courtney Dressing and Dave Charbonneau from the Center for Astrophysics that said about 6% of red dwarf stars could host Earth-size habitable planets. But since then, Dressing and Charbonneau realized they had a bug in their code and they have revised the frequency to 15%, not 6%. That more than doubles the estimates.

Then, just this week we reported how Ravi Kopparapu from at Penn State University and the Virtual Planetary Lab at University of Washington suggested that the habitable zone around planets should be redefined, based on new, more precise data that puts the habitable zones farther away from the stars than previously thought. Applying the new habitable zone to red dwarfs pushes the fraction of red dwarfs having habitable planets closer to 50%.

The graphic shows optimistic and conservative habitable zone boundaries around cool, low mass stars. The numbers indicate the names of known Kepler planet candidates. Yellow color represents candidates with less than 1.4 times Earth-radius. Green color represents planet candidates  between 1.4  and 2 Earth radius. Credit: Penn State.
The graphic shows optimistic and conservative habitable zone boundaries around cool, low mass stars. The numbers indicate the names of known Kepler planet candidates. Yellow color represents candidates with less than 1.4 times Earth-radius. Green color represents planet candidates between 1.4 and 2 Earth radius. Credit: Penn State.

But now, the new paper submitted to arXiv this week, “The Radius Distribution of Small Planets Around Cool Stars” by Tim Morton and Jonathan Swift (a grad student and postdoc from Caltech’s ExoLab) finds there is an additional correction to the numbers by Dressing and Charbonneau numbers.

“This is basically due to the fact that there are more small planets than we thought because Kepler isn’t yet sensitive to a large number that take longer to orbit,” Ragozzine told Universe Today. “Accounting for this effect and enhancing the calculation using some nice new statistical techniques, they estimate that the Dressing and Charbonneau numbers are actually too small by a factor of 2. This puts the number at 30% in the old habitable zone, and now up to about 100% in the new habitable zone.”

Now, it is important to point out a few things about this.

As Morton noted in an email to Universe Today, it’s important to realize that this is not yet a direct measurement of the habitable zone rate, “but it is what I would classify as a very careful extrapolation of the rate of small planets we have observed at shorter periods around M dwarfs.”

And as Ragozzine and Morton confirmed for us, all of these numbers are based on Kepler results only, and so far, while there confirmed planets around M dwarfs, there are none confirmed so far in the habitable zone.

“They do not use any results from Radial Velocity (HARPS, etc.),” Ragozzine said. “As such, these are all candidates and not planets. That is, the numbers are based on an assumption that most/all of the Kepler candidates are true planets. There are varying opinions about what the false positive rate would be, especially for this particular subset of stars, but there’s no question that the numbers may go down because some of these candidates turn out to be something else other than HZ Earth-size planets.”

Other caveats need to be considered, as well.

“Everyone needs to be careful about what “100%” means,” Ragozzine said. “It does not mean that every M dwarf has a HZ Earth-size planet. It means that, on average, there is 1 HZ-Earth size planet for every M dwarf. The difference comes from the fact that these small stars tend to have planets that come in packs of 3-5. If, on average, the number of planets per star is one, and the typical M star has 5 planets, then only 20% of M stars have planetary systems.”

The point is subtle but important. For example, if you want to plan new telescope missions to observe these planets, understanding their distribution is critical, Ragozzine said.

“I’m very interested in understanding what kinds of planetary systems host these planets as this opens a number of interesting scientific questions. Discerning their frequency and distribution are both valuable.”

Additionally, the new definition of the habitable zone from Kopparapu et al. makes a big difference.

As Ragozzine points out:

“This is really starting to point out that the definition of the HZ is based on mostly theoretical arguments that are hard to rigorously justify,” Ragozzine said. “For example, a recent paper came out showing that atmospheric pressure makes a big difference but there’s no way to estimate what the pressure will be on a distant world. (Even in the best cases, we can barely tell that the whole planet isn’t one giant puffy atmosphere.) Work by Kopparapu and others is clearly necessary and, from an astrobiological point of view, we have no choice but to use the best theory and assumptions available. Still, some of us in the field are starting to become really wary of the “H-word” (as Mike Brown calls it), wondering if it is just too speculative. Incidentally, I much, much prefer that these worlds be referred to as potentially habitable, since that’s really what we’re trying to say.”

However, Morten told Universe Today that he feels the biggest difference in their work was the careful extrapolation from short period planets to longer periods. “This is why we get occurrence rates for the smaller planets that are twice as large as Dressing or Kopparapu,” he said via email.

He also thinks the most interesting thing in their paper is not just the overall occurrence rate or the HZ occurrence rate even, but the fact that, for the first time, they’ve identified some interesting structure in the distribution of exoplanet radii.

“For example, we show that it appears that planets of roughly 1 Earth radius are actually the most common size of planet around these cool stars,” Morton said. “This makes some intuitive sense given the rocky bodies in our Solar System—there are two planets about the size of Earth, making it the most common size of small planet in our system too! Also, we find that there are lots and lots of planets around M dwarfs that are just beyond the detection threshold of current ground-based transiting surveys—this means that as more sensitive instruments and surveys are designed, we will just keep finding more and more of these exciting planets!”

But Ragozzine told us that even with all aforementioned caveats, the exciting thing is that the main gist of these new numbers probably won’t change much.

“No one is expecting that the answer will be different by more than a factor of a few – i.e., the true range is almost certainly between 30-300% and very likely between 70-130%,” Ragozzine said. “As the Kepler candidate list improves in quantity (due to new data), purity, and uniformity, the main goal will be to justify these statements and to significantly reduce that range.”

Another fun aspect is that this new work is being done by the young generation of astronomers, grad students and postdocs.

“I’m sure this group and others will continue producing great things… the exciting scientific results are just beginning!” Ragozzine said.

“Impossible” Binary Star Systems Found

Astronomers think about half of the stars in our Milky Way galaxy are, unlike our Sun, part of a binary system where two stars orbit each other. However, they’ve also thought there was a limit on how close the two stars could be without merging into one single, bigger star. But now a team of astronomers have discovered four pairs of stars in very tight orbits that were thought to be impossibly close. These newly discovered pairs orbit each other in less than 4 hours.

Over the last three decades, observations have shown a large population of stellar binaries, and none of them had an orbital period shorter than 5 hours. Most likely, the stars in these systems were formed close together and have been in orbit around each other from birth onwards.

A team of astronomers using the United Kingdom Infrared Telescope (UKIRT) in Hawaii made the first investigation of red dwarf binary systems. Red dwarfs can be up to ten times smaller and a thousand times less luminous than the Sun. Although they form the most common type of star in the Milky Way, red dwarfs do not show up in normal surveys because of their dimness in visible light.

But astronomers using UKIRT have been monitoring the brightness of hundreds of thousands of stars, including thousands of red dwarfs, in near-infrared light, using its state-of-the-art Wide-Field Camera (WFC).

“To our complete surprise, we found several red dwarf binaries with orbital periods significantly shorter than the 5 hour cut-off found for Sun-like stars, something previously thought to be impossible,” said Bas Nefs from Leiden Observatory in the Netherlands, lead author of the paper which was published in journal Monthly Notices of the Royal Astronomical Society. “It means that we have to rethink how these close-in binaries form and evolve.”

Since stars shrink in size early in their lifetime, the fact that these very tight binaries exist means that their orbits must also have shrunk as well since their birth, otherwise the stars would have been in contact early on and have merged. However, it is not at all clear how these orbits could have shrunk by so much.

One possible scenario is that cool stars in binary systems are much more active and violent than previously thought.

The astronomers said it is possible that the magnetic field lines radiating out from the cool star companions get twisted and deformed as they spiral in towards each other, generating the extra activity through stellar wind, explosive flaring and star spots. Powerful magnetic activity could apply the brakes to these spinning stars, slowing them down so that they move closer together.

“The active nature of these stars and their apparently powerful magnetic fields has profound implications for the environments around red dwarfs throughout our Galaxy, ” said team member said David Pinfield from the University of Hertfordshire.

UKIRT has a 3.8 meter diameter mirror, and is the second largest dedicated infrared telescope in the world. It sits at an altitude of 4,200 m on the top of the volcano Mauna Kea on the island of Hawaii.

Read the team’s paper.

Lead image caption: This artist’s impression shows the tightest of the new record breaking binary systems. Two active M4 type red dwarfs orbit each other every 2.5 hours, as they continue to spiral inwards. Eventually they will coalesce into a single star. Credit: J. Pinfield.

Billions of Habitable Worlds Likely in the Milky Way

[/caption]

Could there be ‘tens of billions’ of habitable worlds in our own galaxy? That’s the results from a new study that searched for rocky planets in the habitable zones around red dwarf stars. An international team of astronomers using ESO’s HARPS spectrograph now estimates that there are tens of billions of such planets in the Milky Way galaxy, with probably about one hundred in the Sun’s immediate neighborhood, less than 30 light years away.

“Our new observations with HARPS mean that about 40% of all red dwarf stars have a super-Earth orbiting in the habitable zone where liquid water can exist on the surface of the planet,” said Xavier Bonfils, from IPAG, Observatoire des Sciences de l’Univers de Grenoble, France, and the leader of the team. “Because red dwarfs are so common — there are about 160 billion of them in the Milky Way — this leads us to the astonishing result that there are tens of billions of these planets in our galaxy alone.”

This is the first direct estimate of the number of smaller, rocky planets around red dwarf stars. Add this to another recent finding which suggested that every star in our night sky has at least one planet circling it — which didn’t include red dwarf stars – and our galaxy could be teeming with worlds.

This team used the HARPS spectrograph on the 3.6-metre telescope at ESO’s La Silla Observatory in Chile to search for exoplanets orbiting the most common kind of star in the Milky Way — red dwarf stars (also known as M dwarfs). These stars are faint and cool compared to the Sun, but very common and long-lived, and therefore account for 80% of all the stars in the Milky Way.

The Milky Way over the ESO 3.6-metre Telescope, a photo submitted via Your ESO Pictures Flickr Group. Credit: ESO/A. Santerne

The HARPS team surveyed a carefully chosen sample of 102 red dwarf stars in the southern skies over a six-year period. A total of nine super-Earths (planets with masses between one and ten times that of Earth) were found, including two inside the habitable zones of Gliese 581 and Gliese 667 C respectively.

By combining all the data, including observations of stars that did not have planets, and looking at the fraction of existing planets that could be discovered, the team has been able to work out how common different sorts of planets are around red dwarfs. They find that the frequency of occurrence of super-Earths in the habitable zone is 41% with a range from 28% to 95%.

Bonfils and his team also found that rocky planets were far more common than massive gas giants like Jupiter and Saturn. Less than 12% of red dwarfs are expected to have giant planets (with masses between 100 and 1000 times that of the Earth).

However, the rocky worlds orbiting red dwarfs wouldn’t necessarily be a good place to spend your first exo-vacation – or for harboring life.

“The habitable zone around a red dwarf, where the temperature is suitable for liquid water to exist on the surface, is much closer to the star than the Earth is to the Sun,” said Stéphane Udry from the Geneva Observatory and member of the team. “But red dwarfs are known to be subject to stellar eruptions or flares, which may bathe the planet in X-rays or ultraviolet radiation, and which may make life there less likely.”

New Exoplanet Discovered

A new exoplanet was discovered in this HARPS survey of red dwarfs: Gliese 667 Cc. This is the second planet in this triple star system and seems to be situated close to the center of the habitable zone. Although this planet is more than four times heavier than the Earth it is the closest twin to Earth found so far and almost certainly has the right conditions for the existence of liquid water on its surface. This is the second super-Earth planet inside the habitable zone of a red dwarf discovered during this HARPS survey, after Gliese 581d was announced in 2007 and confirmed in 2009.

“Now that we know that there are many super-Earths around nearby red dwarfs we need to identify more of them using both HARPS and future instruments,” said Xavier Delfosse, another member of the team. “Some of these planets are expected to pass in front of their parent star as they orbit — this will open up the exciting possibility of studying the planet’s atmosphere and searching for signs of life.”

Research papers: Bonfils et al. and Delfosse et al.

Source: ESO