So it Begins, Red Dragon Delayed 2 Years to 2020

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With so many exciting projects competing for the finite time of SpaceX’s super talented engineers, something important had to give. And that something comes in the form of slipping the blastoff of SpaceX’s ambitious Red Dragon initiative to land the first commercial spacecraft on Mars by 2 years – to 2020. Nevertheless it will include a hefty science payload, SpaceX’s President told Universe Today.

The Red Dragon launch postponement from 2018 to 2020 was announced by SpaceX president Gwynne Shotwell during a Falcon 9 prelaunch press conference at historic pad 39A at NASA’s Kennedy Space Center in Florida.

“We were focused on 2018, but we felt like we needed to put more resources and focus more heavily on our crew program and our Falcon Heavy program, said SpaceX Gwynne Shotwell at the pad 39a briefing.

“So we’re looking more in the 2020 time frame for that.”

And whenever Red Dragon does liftoff, it will carry a significant “science payload” to the Martian surface, Shotwell told me at the pad 39A briefing.

“As much [science] payload on Dragon as we can,” Shotwell said. Science instruments would be provided by “European and commercial guys … plus our own stuff!”

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

Another factor potentially at play is yesterdays (Feb 27) announcement by SpaceX CEO Elon Musk that he has two hefty, revenue generating paying customers for a manned Moonshot around the Moon that could blastoff on a commercial crew Dragon as soon as next year atop a Falcon Heavy from pad 39A – as I reported here.

Whereas SpaceX is footing the bill for the private Red Dragon venture.

Pad 39A is the same pad from which the Red Dragon mission will eventually blastoff atop a heavy lift SpaceX Falcon Heavy rocket – and which just reopened for launch business last week on Feb. 19 after lying dormant for more than 6 years since the retirement of NASA’s Space Shuttle Program in July 2011.

So at least the high hurdle of reopening pad 39A has been checked off!

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

SpaceX continues to dream big – setting its extraterrestrial sights on the Moon and Mars.

Musk founded SpaceX with the dream of transporting Humans to the Red Planet and establishing a ‘City on Mars’.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2020. Credit: SpaceX

Since launch windows to Mars are only available every two years due to the laws of physics and planetary alignments, the minimum Red Dragon launch delay automatically amounts to 2 years.

Furthermore the oft delayed Falcon Heavy has yet to launch on its maiden mission.

Shotwell said the maiden Falcon Heavy launch from pad 39A is planned to occur this summer, around mid year or so – after Pad 40 is back up and running.

And the commercial crew Dragon 2 spacecraft being built under contract to NASA to launch American astronauts to the International Space Station (ISS) has also seen its maiden launch postponed more than six months over the past calendar year.

Finishing the commercial crew Dragon is absolutely critical to NASA for launching US astronauts to the ISS from US soil – in order to end our total dependence on Russia and the Soyuz capsule at a cost in excess of $80 million per seat.

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

The bold Red Dragon endeavor which involved launching an uncrewed version of the firms Dragon cargo spacecraft to carry out a propulsive soft landing on Mars as soon as 2018, was initially announced with great fanfare by SpaceX less than a year ago in April 2016.

At that time, SpaceX signed a space act agreement with NASA, wherein the agency will provide technical support to SpaceX with respect to Mars landing technologies for ‘Red Dragon’ and NASA would reciprocally benefit from SpaceX technologies for Mars landing.

But given the magnitude of the work required for this extremely ambitious Mars landing mission, the two year postponement was pretty much expected from the beginning by this author.

The main goal is to propulsively land the heaviest payload ever on Mars – something 5-10 times the size of anything landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX noted last April.

Red Dragon will utilize supersonic retropropulsion to achieve a safe touchdown.

I asked Shotwell whether Red Dragon would include a science payload? Would Universities and Industry compete to submit proposals?

“Yes we had planned to fly [science] stuff in 2018, but people are also more ready to fly in 2020 than 2018,” Shotwell replied.

“Yes we are going to put as much [science] payload on Dragon as we can. By the way, just Dragon landing alone will be the largest mass ever put on the surface of Mars. Just the empty Dragon alone. That will be pretty crazy!”

“There are a bunch of folks that want to fly [science], including European customers, commercial guys.”

“Yeah there will be [science] stuff on Dragon – plus our own stuff!” Shotwell elaborated.

Whenever it does fly, SpaceX will utilize a recycled cargo Dragon from one of the space station resupply missions for NASA, said Jessica Jensen, SpaceX Dragon Mission manager at a KSC media briefing.

NASA’s still operating 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Dramatic wide angle mosaic view of butte with sandstone layers showing cross-bedding in the Murray Buttes region on lower Mount Sharp with distant view to rim of Gale crater, taken by Curiosity rover’s Mastcam high resolution cameras. This photo mosaic was assembled from Mastcam color camera raw images taken on Sol 1454, Sept. 8, 2016 and stitched by Ken Kremer and Marco Di Lorenzo, with added artificial sky. Featured at APOD on 5 Oct 2016. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s agency wide goal is to send humans on a ‘Journey to Mars’ by the 2030s utilizing the SLS rocket and Orion deep space capsule – slated for their uncrewed maiden launch in late 2018.

Although NASA has just initiated a feasibility study to alter the mission and add 2 astronauts with a revised liftoff date of 2019.

Of course it all depends on whether the new Trump Administration bolsters NASA or slashes NASA funding.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Uh, We’re Going To Need A Bigger Landing Pad

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

Since 2000, Elon Musk been moving forward with his vision of a fleet of reusable rockets, ones that will restore domestic launch capability to the US and drastically reduce the cost of space launches. The largest rocket in this fleet is the Falcon Heavy, a variant of the Falcon 9 that uses the same rocket core, with two additional boosters that derived from the Falcon 9 first stage. When it lifts off later this year, it will be the most operational powerful rocket in the world.

More than that, SpaceX intends to make all three components of the rocket fully recoverable. This in turn will mean mean that the company is going to need some additional landing pads to recover them all. As such, the company recently announced that it is seeking federal permission to create second and third landing zones for their incoming rockets on Florida’s Space Coast.

The announcement came on Monday, July 18th, during a press conference at their facility at the Cape Canaveral Air Force Station. As they were quoted as saying by the Orlando Sentinel:

“SpaceX expects to fly Falcon Heavy for the first time later this year. We are also seeking regulatory approval to build two additional landing pads at Cape Canaveral Air Force Station. We hope to recover all three Falcon Heavy rockets, though initially we may attempt drone ship landings [at sea].”

Artist's concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX
Artist’s concept of the SpaceX Falcon Heavy launching in 2018. Credit: SpaceX

At present, SpaceX relies on both drone ships and their landing site at Cape Canaveral to recover rocket boosters after they return to Earth. Which option they have used depended on how high and how far downrange the rockets traveled. But with this latest announcement, they are seeking to recover all three boosters used in a single Falcon Heavy launch, which could prove to be essential down the road.

Since December, SpaceX has managed to successfully recover five Falcon 9 rockets, both at sea and on land. In fact, the announcement of their intentions to expand their landing facilities on Monday came shortly after a spent Falcon 9 returned to the company’s landing site, shortly after deploying over 2268 kg (5000 lbs) of cargo into space during a nighttime launch.

But the planned launch of the Falcon Heavy – Falcon Heavy Demo Flight 1, which is scheduled to take place this coming December  – is expected to break new ground. For one, it will give the private aerospace company the ability to lift over 54 metric tons (119,000 lbs) into orbit, more the twice the payload of a Delta IV Heavy – the highest capacity rocket in service at the moment.

Chart comparing SpaceX's Falcon 9 and Falcon Heavy. Credit: SpaceX
Chart comparing SpaceX’s Falcon 9 and Falcon Heavy. Credit: SpaceX

Foremost among these are Elon Musk’s plans to colonize Mars. These efforts will begin in April or May of 2018 with the launch of the Dragon 2 capsule (known as the “Red Dragon”) using a Falcon Heavy. As part of an agreement with NASA to gain more information on Mars landings, the Red Dragon will send a payload to Mars that has yet to be specified.

Beyond that, the details are a bit sketchy; but Musk has indicated that he is committed to mounting a crewed mission to Mars by 2024. And if all goes well with Demo Flight 1, SpaceX expects to follow it up with Falcon Heavy Demo Flight 2 in March of 2017. This launch will see the Falcon Heavy being tested as part of the U.S. Air Force’s Evolved Expendable Launch Vehicle (EELV) certification process.

The rocket will also be carrying some important payloads, such as The Planetary Society’s LightSail 2. This 32 square-meter (344 square-foot) craft, which consists of four ultra-thin Mylar sails, will pick up where its predecessor (the LightSail 1, which was deployed in June 2015) left off – demonstrating the viability of solar sail spacecraft.

Other payloads will include NASA’s Deep Space Atomic Clock and Green Propellant Infusion Mission (GPIM), the US Air Force’s Innovative Space-based radar Antenna Technology (ISAT) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) satellites, and Georgia Tech’s Prox-1 nanosatellite, which will act as the LightSail 2’s parent sattelite.

Apollo 11's Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube
Apollo 11’s Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary “Moonwalk One.” Credit: NASA/Theo Kamecke/YouTube

The Falcon Heavy boasts three Falcon 9 engine cores, each of which is made up of 9 Merlin rocket engines. Together, these engines generate more than 2.27 million kg (5 million pounds) of thrust at liftoff, which is the equivalent of approximately eighteen 747 aircraft. Its lift capacity is also equivalent to the weight of a fully loaded 737 jetliner, complete with passengers, crew, luggage and fuel.

The Saturn V rocket – the workhorse of the Apollo Program, and which made its last flight in 1973 – is only American rocket able to deliver more payload into orbit. This is not surprising, seeing as how the Falcon Heavy was specifically designed for a new era of space exploration, one that will see humans return to the Moon, go to Mars, and eventually explore the outer Solar System.

Fingers crossed that everything works out and the Falcon Heavy proves equal to the enterprise. The year of 2024 is coming fast and many of us are eager to see boots being put to red soil! And be sure to enjoy this animation of the Falcon Heavy in flight:

Further Reading: Orlando Sentinel

When Can I Die on Mars?

When Can I Die On Mars?


I don’t know about you, but I’d like to live forever. In a few decades, the Singularity will happen, and I’ll merge with the artificial super intelligence, transcend this meat-based existence and then explore the Hubble Sphere with the disembodied voice of Scarlett Johansson as my guide. See you on the other side, suckers.

Not Elon Musk, though. He thinks we should fear our benevolent computer overlords, and make our way to Mars, where we can live out the rest of our days growing potatoes, huddling in lava tubes, and fighting a guerilla war against a spiritually enlightened and lovable artificial lifeform that really only has our best interests at heart.

In case you have no idea who I’m talking about, Elon Musk is the CEO of the revolutionary rocket company SpaceX, as well as the Tesla electric car company.

Elon Musk. Credit: SpaceX
Elon Musk. Credit: SpaceX

It might sound crazy, but the whole reason Elon Musk started SpaceX was that he wanted to help humanity explore the Solar System. But in order to do that, he’d need inexpensive rocket launches. And since those didn’t exist yet, he started a rocket company to provide launches at a fraction of the cost of the existing launch providers.

At the time I’m recording this video, SpaceX has already had many successful launches. They’ve successfully landed rockets back at their landing pad, and on a floating barge  in the Atlantic Ocean. It really looks like Elon Musk’s plans are going to work, and we’re going to become a true spacefaring civilization.

Elon Musk recently revealed  the design for what he calls the Interplanetary Transport System (ITS) – an upgraded version of his Mars Colonial Transporter (MCT). This ship, according to Musk, will ferry 100 passengers to Mars every 26 months (when the planets are closest), and says that tickets will cost $500,000 per person (at least initially).

Wow, 2024, huh? That’s pretty soon! I’m not sure if you realize how complicated and dangerous this mission will be. This guy is really serious.

An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

The plan involves using a scaled up version of SpaceX’s Falcon rocket, known as the Falcon Heavy, to test techniques for orbiting, descent, and landing on Mars. By bolting 3 Falcon boosters together, this new launch vehicle will be capable of blasting 54,000 kilograms into orbit, or 22,000 kilograms to geostationary orbit, or 13,900 kilograms to Mars.

It’ll even send 2,600 kilograms to Pluto, if that’s what you’re looking for. So far a Falcon Heavy hasn’t been tested yet, but they’re due to start flying by early 2017.

The spacecraft payload is known as the Red Dragon, an uncrewed version of the Dragon 2 which Musk plans to send to Mars in 2018. This is a specially modified version of the SpaceX Dragon capsule which has already successfully delivered cargo to the International Space Station.

Red Dragon will weigh 10 times more than NASA’s Curiosity Rover, and this is a big problem. Landing this much spacecraft on the surface on Mars is incredibly challenging. The atmosphere is just 1% the thickness of Earth’s, so it doesn’t provide any way to slow a spacecraft down from its interplanetary flight.

In the past, rocket engineers have had to develop these complicated landing systems with parachutes, airbags, and retrorockets. But there’s limit to how heavy a mass you can land this way. Curiosity pretty much tested that limit.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

Red Dragon makes it simple. It’ll be equipped with 8 SuperDraco engines built into the capsule which will fire once it enters the atmosphere, and allow it to touch down gently on the surface of Mars. If this works, there’ll be no limit to the size of payloads SpaceX can deploy to the surface of Mars. In fact, once it gets Mars right, Red Dragon should be able to land softly on pretty much any object in the Solar System.

Elon Musk does seem serious about setting up a colony on Mars. Once this first Red Dragon land on the surface, they’ll send capsule after capsule during the perfect Mars launch window that opens up every 2 years or so.

Over time, a real colony’s worth of supplies will be gathered on the surface of Mars. SpaceX will have worked out all the tricks to safely sending spacecraft to the Red Planet, and it’ll be time to send actual colonists willing to live out the rest of their lives on Mars.

We’re still not entirely sure humans can survive long term on Mars. The lack of atmosphere will suffocate you, the unfiltered radiation will fill you with cancer, and the low gravity may melt your bones. Seriously, humanity has never tried living in such an extreme environment.

Musk is so serious about this plan to send humans to Mars, that he’s stated that he’ll never take SpaceX public. The company will remain private so that it’ll prioritize the goal of colonizing Mars over any kind of short sighted shareholder cash grab.

If everything goes well, the first Red Dragon will launch for Mars in 2018. And then more will go every 2 years after that. And at some point, humans will climb into a Red Dragon capsule and blast off to begin the first human colony on Mars.

So when can we die on Mars? Musk hasn’t given us a firm date yet, but if that first Red Dragon does launch in 2018, we won’t have to wait too much longer.

SpaceX Announces Plan to Launch Private Dragon Mission to Mars in 2018

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

SpaceX announced plans today, April 27, for the first ever private mission to Mars which involves sending an uncrewed version of the firms Dragon spacecraft to accomplish a propulsive soft landing – and to launch it as soon as 2018 including certain technical assistance from NASA.

Under a newly signed space act agreement with NASA, the agency will provide technical support to SpaceX with respect to Mars landing technologies for the new spacecraft known as a ‘Red Dragon’ and possibly also for science activities.

“SpaceX is planning to send Dragons to Mars as early as 2018,” the company posted in a brief announcement today on Facebook and other social media about the history making endeavor.

The 2018 commercial Mars mission involves launching the ‘Red Dragon’ – also known as Dragon 2 – on the SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. It’s a prelude to eventual human missions.

The Red Dragon initiative is a commercial endeavor that’s privately funded by SpaceX and does not include any funding from NASA. The agreement with NASA specifically states there is “no-exchange-of-funds.”

As of today, the identity and scope of any potential science payload is undefined and yet to be determined.

Hopefully it will include a diverse suite of exciting research instruments from NASA, or other entities, such as high powered cameras and spectrometers characterizing the Martian surface, atmosphere and environment.

SpaceX CEO and billionaire founder Elon Musk has previously stated his space exploration goals involve helping to create a Mars colony which would ultimately lead to establishing a human ‘City on Mars.’

Musk is also moving full speed ahead with his goal of radically slashing the cost of access to space by recovering a pair of SpaceX Falcon 9 first stage boosters via successful upright propulsive landings on land and at sea – earlier this month and in Dec. 2015.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018.  Credit: SpaceX
Artists concept for sending uncrewed SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

The 2018 liftoff campaign marks a significant step towards fulfilling Musk’s Red Planet vision. But we’ll have to wait another 5 months for concrete details.

“Red Dragon missions to Mars will also help inform the overall Mars colonization architecture that SpaceX will reveal later this year,” SpaceX noted.

Musk plans to reveal the details of the Mars colonization architecture later this year at the International Astronautical Congress (IAC) being held in Guadalajara, Mexico from September 26 to 30, 2016.

Landing on Mars is not easy. To date only NASA has successfully soft landed probes on Mars that returned significant volumes of useful science data.

In the meantime a few details about the SpaceX Red Dragon have emerged.

The main goal is to propulsively land something 5-10 times the size of anything previously landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX further posted.

NASA’s 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018.  Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2018. Credit: SpaceX

As part of NASA’s agency wide goal to send American astronauts on a human ‘Journey to Mars’ in the 2030s, NASA will work with SpaceX on some aspects of the Red Dragon initiative to further the agency’s efforts.

According to an amended space act agreement signed yesterday jointly by NASA and SpaceX officials – that originally dates back to November 2014 – this mainly involves technical support from NASA and exchanging entry, descent and landing (EDL) technology, deep space communications, telemetry and navigation support, hardware advice, and interplanetary mission and planetary protection advice and consultation.

“We’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company,” NASA Deputy Administrator Dava Newman wrote in a NASA blog post today.

“In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.”

“This collaboration could provide valuable entry, descent and landing data to NASA for our journey to Mars, while providing support to American industry,” NASA noted in a statement.

The amended agreement with NASA also makes mention of sharing “Mars Science Data.”

As of today, the identity, scope and weight of any potential science payload is undefined and yet to be determined.

Perhaps it could involve a suite of science instruments from NASA, or other entities, such as cameras and spectrometers characterizing various aspects of the Martian environment.

In the case of NASA, the joint agreement states that data collected with NASA assets is to be released within a period not to exceed 6 months and published where practical in scientific journals.

The Red Dragon envisioned for blastoff to the Red Planet as soon as 2018 would launch with no crew on board on a critical path finding test flight that would eventually pave the way for sending humans to Mars – and elsewhere in the solar system.

“Red Dragon Mars mission is the first test flight,” said Musk.

“Dragon 2 is designed to be able to land anywhere in the solar system.”

However, the Dragon 2 alone is far too small for a round trip mission to Mars – lasting some three years or more.

“But wouldn’t recommend transporting astronauts beyond Earth-moon region,” tweeted Musk.

“Wouldn’t be fun for longer journeys. Internal volume ~size of SUV.”

Furthermore, for crewed missions it would also have to be supplemented with additional modules for habitation, propulsion, cargo, science, communications and more. Think ‘The Martian’ movie to get a realistic idea of the complexity and time involved.

Red Dragon’s blastoff from KSC pad 39A is slated to take place during the Mars launch window opening during April and May 2018.

The inaugural liftoff of the Falcon Heavy is currently scheduled for late 2016 after several years postponement.

If all goes well, Red Dragon could travel to Mars at roughly the same time as NASA’s next Mission to Mars – namely the InSight science lander, which will study the planets deep interior with a package of seismometer and heat flow instruments.

InSight’s launch on a United Launch Alliance Atlas V is targeting a launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. Liftoff was delayed from this year due to a flaw in the French-built seismometer.

SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept.  Credit: SpaceX
SpaceX Red Dragon spacecraft launches to Mars on SpaceX Falcon Heavy as soon as 2018 in this artists comcept. Credit: SpaceX

Whoever wants to land on Mars also has to factor in the relevant International treaties regarding ‘Planetary Protection’ requirements.

Wherever the possibility for life exists, the worlds space agency’s who are treaty signatories, including NASA, are bound to adhere to protocols limiting contamination by life forms from Earth.

SpaceX intends to take planetary protection seriously. Under the joint agreement, SpaceX is working with relevant NASA officials to ensure proper planetary protection procedures are followed. One of the areas of collaboration with NASA is for them to advise SpaceX in the development a Planetary Protection Plan (PPP) and assist with the implementation of a PPP including identifying existing software/tools.

Red Dragon is derived from the SpaceX crew Dragon vehicle currently being developed under contract for NASA’s Commercial Crew Program (CCP) to transport American astronauts back and forth to low Earth orbit and the International Space Station (ISS).

SpaceX and Boeing were awarded commercial crew contracts from NASA back in September 2014.

Both firms hope to launch unmanned and manned test flights of their SpaceX Crew Dragon and Boeing CST-100 Starliner spacecraft to the ISS starting sometime in 2017.

The crew Dragon is also an advanced descendent of the original unmanned cargo Dragon that has ferried tons of science experiments and essential supplies to the ISS since 2012.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

To enable propulsive landings, SpaceX recently conducted hover tests using a Dragon 2 equipped with eight side-mounted SuperDraco engines at their development testing facility in McGregor, TX.

These are “Key for Mars landing,” SpaceX wrote.

“We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been,” Newman states.

SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas.  Credit: SpaceX
SpaceX Dragon 2 crew vehicle, powered by eight SuperDraco engines, conducts propulsive hover test at the company’s rocket development facility in McGregor, Texas. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Three Words: SpaceX… Mars… 2018

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

Fans of Elon Musk and commercial space exploration are buzzing over the news! Back in 2002, when Musk first established the private aerospace company SpaceX, he did so with the intent of creating the technologies needed to reduce the cost of space transportation and enable crewed missions to Mars. And for the past few years, industry and the general public alike have been waiting on him to say when missions to Mars might truly begin.

Earlier this morning, Elon Musk did just that, when he tweeted from his company account that SpaceX plans to send a Dragon capsule to Mars by 2018. Despite talking about his eventual plans to mount crewed missions to Mars in the coming decades, and to even build a colony there, this is the first time that a specific date has been attached to any plans.

What was also indicated in the announcement was that the missions would be built around the “Red Dragon” mission architecture. As a modified, unmanned version of the Dragon capsule, this craft was conceived back in 2013 and 2015 as part of the NASA Discovery Program – specifically for Mission 13, a series of concepts which are scheduled to launch sometime in 2022.

Concept art showing a Dragon capsule landing on Mars. Credit: SpaceX
Concept art showing a Dragon capsule landing on Mars. Credit: SpaceX

Though the idea was never submitted to NASA, SpaceX has kept them on hand as part of a proposed low-cost Mars lander mission that would deploy a sample-return rover to the Martian surface. The mission will be deployed using a Falcon Heavy rocket, based on the mission profile and the illustrations that accompanied the announcement.

This mission would not only demonstrate SpaceX’s ability to procure samples from the Martian environment and bring them back to Earth – something that only federal space agencies like NASA have been able to do so far – but also test techniques and equipment that human crews will be using to enter the Martian atmosphere.

And if all goes well, we can expect that Musk will push forward with his plans for both crewed missions, and the development of all the necessary architecture to being work on his Mars Colonial Transporter, which he hopes to use to begin ferrying people to Mars to build his planned colony.

Stay tuned for more in-depth analysis of this announcement from our resident expert, Ken Kremer!