Supermassive Black Holes Keep Galaxies From Getting Bigger

Radio telescope image of the galaxy 4C12.50, nearly 1.5 billion light-years from Earth. Inset shows detail of location at end of superfast jet of particles, where a massive gas cloud (yellow-orange) is being pushed by the jet. (Credit: Morganti et al., NRAO/AUI/NSF)

It’s long been a mystery for astronomers: why aren’t galaxies bigger? What regulates their rates of star formation and keeps them from just becoming even more chock-full-of-stars than they already are? Now, using a worldwide network of radio telescopes, researchers have observed one of the processes that was on the short list of suspects: one supermassive black hole’s jets are plowing huge amounts of potential star-stuff clear out of its galaxy.

Astronomers have theorized that many galaxies should be more massive and have more stars than is actually the case. Scientists proposed two major mechanisms that would slow or halt the process of mass growth and star formation — violent stellar winds from bursts of star formation and pushback from the jets powered by the galaxy’s central, supermassive black hole.

Read more: Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

“With the finely-detailed images provided by an intercontinental combination of radio telescopes, we have been able to see massive clumps of cold gas being pushed away from the galaxy’s center by the black-hole-powered jets,” said Raffaella Morganti, of the Netherlands Institute for Radio Astronomy and the University of Groningen.

The scientists studied a galaxy called 4C12.50, nearly 1.5 billion light-years from Earth. They chose this galaxy because it is at a stage where the black-hole “engine” that produces the jets is just turning on. As the black hole, a concentration of mass so dense that not even light can escape, pulls material toward it, the material forms a swirling disk surrounding the black hole. Processes in the disk tap the tremendous gravitational energy of the black hole to propel material outward from the poles of the disk.

NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)
NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)

At the ends of both jets, the researchers found clumps of hydrogen gas moving outward from the galaxy at 1,000 kilometers per second. One of the clouds has much as 16,000 times the mass of the Sun, while the other contains 140,000 times the mass of the Sun.

The larger cloud, the scientists said, is roughly 160 by 190 light-years in size.

“This is the most definitive evidence yet for an interaction between the swift-moving jet of such a galaxy and a dense interstellar gas cloud,” Morganti said. “We believe we are seeing in action the process by which an active, central engine can remove gas — the raw material for star formation — from a young galaxy,” she added.

The researchers published their findings in the September 6 issue of the journal Science.

Source: NRAO press release

Newly Discovered Fast Radio Bursts May be Colliding Neutron Stars

An artist's conception of two neutron stars, moments before they collide. Image Credit: NASA

The Universe is sizzling with undiscovered phenomena. Only last month astronomers heard four unexpected bumps in the night. These Fast Radio Bursts released torrents of energy, each occurred only once, and lasted a few thousandths of a second. Their origin has since mystified astronomers.

Dismissing my first guess, which includes a feverish Jodie Foster verifying the existence of extraterrestrial life, astronomers have found a more likely answer. Two neutron stars collide, but before doing so produce a quick burst of radio emission, which we later observe as a Fast Radio Burst.

Our first hint? These Fast Radio Bursts are extra-galactic in origin.  The exact distance is quantifiable from a “dispersion measure – the frequency dependent time delay of the radio signal,” Dr. Tomonori Totani, lead author on the paper, told Universe Today. “This is proportional to the number of electrons along the line of sight.”

For all bursts, the short-wavelength component arrived at the telescope a fraction of a second before the longer wavelengths.  This is due to an effect known as interstellar dispersion: through any medium, longer-wavelength light moves slightly slower than short-wavelength light.

Light from extra-galactic objects will have to travel through intergalactic space, which is teeming with electrons in clouds of cold plasma. The farther the light travels, the more electrons it will have to travel through, and the greater the time delay between arriving wavelength components. By the time light reaches the Earth, it has been dispersed, and the amount of dispersion is directly correlated with distance.

These Fast Radio Bursts are likely to have originated anywhere from 5 to 10 billion light years away.

While the exact source of these Fast Radio Bursts has been highly debated, a recent hypothesis concludes that they are the result of merging neutron stars in the distant Universe.

In the final milliseconds before merging, the rotation periods of the two neutron stars synchronize – they become tidally locked to one another as the Moon is tidally locked to the Earth. At this point their magnetic fields also synchronize. Energetic charged particles spiral along the strong magnetic field lines and emit a beam of radio synchrotron emission.

Known neutron star magnetic field strengths are consistent with the radio flux observed in these Fast Radio Bursts.  The emission then ceases in a few milliseconds when the two neutron stars have collided, which explains the short duration of these Fast Radio Bursts.

Not only does this mechanism describe both the high energy and the time duration of these bursts, but they’re inferred occurrence rate as well. It’s likely that 100,000 Fast Radio Bursts occur each day. This matches the likely neutron star merger rate.

Merging neutrons stars will also create gravitational waves – ripples in the curvature of spacetime that propagate away from the event. Dr. Totani emphasized that the next step will be to perform a correlated search of gravitational waves and Fast Radio Bursts. Such a fast rate estimate is certainly good news for scientists hoping to detect gravitational waves in the nearby future.

The Universe is bursting with energy – literally – every 10 seconds, and until recently we simply had no idea. This recently discovered phenomenon is likely to be the center of a new active area of research. And I have no doubt that it will lead to exciting discoveries that just may break trends and burst into new territories.

The discovery paper may be found here, while the paper analyzing neutron stars as a likely source may be found here.

Podcast: The Arecibo Observatory

The Arecibo Observatory in Puerto Rico.

The mighty Arecibo Radio Observatory is one of the most powerful radio telescopes ever built – it’s certainly the larger single aperture radio telescope on Earth, nestled into a natural sinkhole in Puerto Rico. We’re celebrating the 50th anniversary of the construction of the observatory with a special episode of Astronomy Cast.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

The Arecibo Observatory” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:


The Curious Channel 37 — Must-see TV For Radio Astronomy

The Very Large Array, one of the world's premier astronomical radio observatories, consists of 27 radio antennas in a Y-shaped configuration 50 miles west of Socorro, New Mexico. Each antenna is 82 feet (25 m) in diameter. The data from the antennas is combined electronically to give the resolution of an antenna 22 miles (36 km) across. Image courtesy of NRAO/AUI and NRAO

Thanks to Channel 37, radio astronomers keep tabs on everything from the Sun to pulsars to the lonely spaces between the stars. This particular frequency, squarely in the middle of the UHF TV broadcast band, has been reserved for radio astronomy since 1963, when astronomers successfully lobbied the FCC to keep it TV-free.

Back then UHF TV stations were few and far between. Now there are hundreds, and I’m sure a few would love to soak up that last sliver of spectrum. Sorry Charley, the moratorium is still in effect to this day. Not only that, but it’s observed in most countries across the world.

Channel 37, a slice of the radio spectrum from 608 and 614 Megahertz (MHz) reserved for radio astronomy, sits in the middle of the UHF TV band. Click to see the full spectrum. Credit: US Dept. of Commerce
Channel 37, a slice of the radio spectrum from 608 and 614 Megahertz (MHz) reserved for radio astronomy, sits in the middle of the UHF TV band. Click to see the full spectrum. Credit: US Dept. of Commerce

So what’s so important about Channel 37? Well, it’s smack in the middle of two other important bands already allocated to radio astronomy – 410 Megahertz (MHz) and 1.4 Gigahertz (Gz). Without it, radio astronomers would lose a key window in an otherwise continuous radio view of the sky. Imagine a 3-panel bay window with the middle pane painted black. Who wants THAT?

The visible colors, infrared, radio, X-rays and gamma rays are all forms of light and comprise the electromagnetic spectrum. Here you can compare their wavelengths with familiar objects and see how their frequencies (bottom numbers) increase with decreasing wavelength. Credit: ESA
The visible colors, infrared, radio, X-rays and gamma rays are all forms of light and comprise the electromagnetic spectrum. Here you can compare their wavelengths with familiar objects and see how their frequencies (bottom numbers) increase with decreasing wavelength. Credit: ESA

Channel 37 occupies a band spanning from 608-614 MHz. A word about Hertz. Radio waves are a form of light just like the colors we see in the rainbow or the X-rays doctors use to probe our bones. Only difference is, our eyes aren’t sensitive to them. But we can build instruments like X-ray machines and radio telescopes to “see” them for us.

Diagram showing what how Earth's atmosphere allows visible light, a portion of infrared and radio light to reach the ground from outer space but filters shorter-wavelength, more dangerous forms of light like X-rays and gamma rays. To study the cosmos in these varieties of light, orbiting telescopes are required.
Diagram showing what how Earth’s atmosphere allows visible light, a portion of infrared and radio light to reach the ground from outer space but filters shorter-wavelength, more dangerous forms of light like X-rays and gamma rays. To study the cosmos in these varieties of light, orbiting telescopes are required.

Every color of light has a characteristic wavelength and frequency. Wavelength is the distance between successive crests in a light wave which you can visualize as a wave moving across a pond. Waves of visible light range from one-millionth to one-billionth of a meter, comparable to the size of a virus or DNA molecule.

X-rays crests are jammed together even more tightly – one X-ray is only as big as an small atom. Radio waves fill out the opposite end of the spectrum with wavelengths ranging from baseball-sized to more than 600 miles (1000 km) long.

The frequency of a light wave is measured by how many crests pass a given point over a given time. If only one crest passes that point every second, the light beam has a frequency of 1 cycle per second or 1 Hertz. Blue light has a wavelength of 462 billionths of a meter and frequency of 645 trillion Hertz (645 Terahertz).

If our eyes could see radio light, this is what the sky would look like. What appear to be stars are distant galaxies. The wispy arcs and shells are the remnants of exploding supernovae.
If our eyes could see radio light, this is what the sky would look like. What appear to be stars are actually distant galaxies glowing brightly with energy radiated as matter gets sucked down black holes in the cores. The wispy arcs and shells are the remnants of exploding supernovae. Since air molecules don’t scatter radio waves like they do visible light to create a blue sky, the sky would be dark even on a sunny day. Credit: National Science Foundation

The higher the frequency, the greater the energy the light carries. X-rays have frequencies starting around 30 quadrillion Hertz (30 petahertz or 30 PHz), enough juice to damage body cells if you get too much exposure. Even ultraviolet light has power to burn skin as many of us who’ve spent time outdoors in summer without sunscreen are aware.

Radio waves are the gentle giants of the electromagnetic spectrum. Their enormous wavelengths mean low frequencies. Channel 37 radio waves have more modest frequencies of around 600 million Hertz (MHz), while the longest radio waves deliver crests almost twice the width of Lake Superior at a rate of 3 to 300 Hertz.

Sun as it would look in the radio portion of the spectrum at a frequency of 1.4 gigahertz (GHz). Credit: NRAO
The sun as it would look in the radio portion of the spectrum at a frequency of 1.4 gigahertz (GHz). Image courtesy of the National Radio Astronomy Observatory (NRAO/AUI)

If Channel 37 were ever lost to TV, the gap would mean a loss of information about the distribution of cosmic rays in the Milky Way galaxy and rapidly rotating stars called pulsars created in the wake of supernovae. Closer to home, observations in the 608-614 MHz band allow astronomers track bursts of radio energy produced by particles blasted out by solar flares traveling through the sun’s outer atmosphere. Some of these can have powerful effects on Earth. No wonder astronomers want to keep this slice of the electromagnetic spectrum quiet. For more details on how useful this sliver is to radio astronomy, click HERE.

Just as optical astronomers seek the darkest sites for their telescopes to probe the most remote corners of the universe, so too does radio astronomy need slices of silence to listen to the faintest whispers of the cosmos.

Radio Observatory Moves to a Shopping Mall

Control room of the Onsala Radio Telescope in Sweden. (Photo courtesy: Onsala Space Observatory / Robert. Cumming)

How’s this for bringing science to the public? This weekend, the Onsala Space Observatory in Sweden will be moving their telescope’s control room to Scandinavia’s biggest shopping mall, Nordstan (North Town) in Gothenburg.

“The idea is to remotely observe with our 20-meter telescope — as well as a couple of smaller ones — and let the general public take part and see how it’s done and how exciting it is,” the observatory’s public relations director Robert Cumming told Universe Today.”

The great thing about radio astronomy is that is can be done during the day – during business hours at the mall.

And they’ve got some interesting targets on the list, including Comet Lemmon. “It’s too close to the sun for ordinary telescopes, but for a radio telescope like ours that’s no problem,” said Cumming.

Of course, the radio telescope itself still has to be out at its normal location, away from radio interference, but the control room will move to allow public interaction. But there will be bus tours available out to the big telescope.

But beyond public outreach, looking at Comet Lemmon gives the astronomers at Onsala practice for the (hopefully) big one this fall, Comet ISON. “Onsala will have one of very few telescopes that can study ISON from the Earth,” Cumming said.

So, for any of our readers in Sweden, head out the North Town Mall in Gothenburg between the hours of 11:00 and 16:00 local time on Sunday, April 28. This is part of the Gothenburg Science Festival.

“It is the first time we are trying to make a telescope control room outside Onsala,” said Mitra Hajigholi, graduate student in astronomy at Chalmers University of Technology, who will be one of several researchers on location at the mall. “With the help of our large 20-meter telescope, we want to look at a comet and display measurements in real time. It will be exciting!”

First-Ever High Resolution Radio Images of Supernova 1987A

An overlay of radio emission (contours) and a Hubble space telescope image of Supernova 1987A. Credit: ICRAR (radio contours) and Hubble (image.)

On February 23, 1987, the brightest extragalactic supernova in history was seen from Earth. Now 26 years later, astronomers have taken the highest resolution radio images ever of the expanding supernova remnant at extremely precise millimeter wavelengths. Using the Australia Telescope Compact Array radio telescope in New South Wales, Australia, Supernova 1987A has been now observed in unprecedented detail. The new data provide some unique imagery that takes a look at the different regions of the supernova remnant.

“Not only have we been able to analyze the morphology of Supernova 1987A through our high resolution imaging, we have compared it to X-ray and optical data in order to model its likely history,” said Bryan Gaensler, Director of CAASTRO (Centre for All-sky Astrophysics) at the University of Sydney.

Radio image at 7 mm. Credit: ICRAR Radio image of the remnant of SN 1987A produced from observations performed with the Australia Telescope Compact Array (ATCA).
Radio image at 7 mm. Credit: ICRAR
Radio image of the remnant of SN 1987A produced from observations performed with the Australia Telescope Compact Array (ATCA).

SN 1987A has been on one of the most-studied astronomical objects, as its “close” proximity in the Large Magellanic Cloud allows it to be a focus for researchers around the world. Astronomers says it has provided a wealth of information about one of the Universe’s most extreme events.

“Imaging distant astronomical objects like this at wavelengths less than 1 centimetre demands the most stable atmospheric conditions,” said lead author, Giovanna Zanardo of ICRAR, the International Center for Radio Astronomy Research. “For this telescope these are usually only possible during cooler winter conditions but even then, the humidity and low elevation of the site makes things very challenging,”

Unlike optical telescopes, a radio telescope can operate in the daytime and can peer through gas and dust allowing astronomers to see the inner workings of objects like supernova remnants, radio galaxies and black holes.

“Supernova remnants are like natural particle accelerators, the radio emission we observe comes from electrons spiraling along the magnetic field lines and emitting photons every time they turn. The higher the resolution of the images the more we can learn about the structure of this object,” said Professor Lister Staveley-Smith, Deputy Director of ICRAR and CAASTRO.

An RGB overlay of the supernova remnant. Credit: ICRAR A Red/Green/Blue overlay of optical, X-Ray and radio observations made by 3 different telescopes. In red are the 7-mm (44GHz) observations made with the Australian Compact Array in New South Wales, in green are the optical observations made by the Hubble Space Telescope, and in blue is an X-ray view of the remnant, observed by Nasa's space based Chandra X-ray Observatory.
An RGB overlay of the supernova remnant. Credit: ICRAR
A Red/Green/Blue overlay of optical, X-Ray and radio observations made by 3 different telescopes. In red are the 7-mm (44GHz) observations made with the Australian Compact Array in New South Wales, in green are the optical observations made by the Hubble Space Telescope, and in blue is an X-ray view of the remnant, observed by Nasa’s space based Chandra X-ray Observatory.

Scientists study the evolution of supernovae into supernova remnants to gain an insight into the dynamics of these massive explosions and the interaction of the blast wave with the surrounding medium.

The team suspects a compact source or pulsar wind nebula to be sitting in the centre of the radio emission, implying that the supernova explosion did not make the star collapse into a black hole. They will now attempt to observe further into the core and see what’s there.

Their paper was published in the Astrophysical Journal.

Source: ICRAR

A Radio Astronomer’s Paradise

Just a few of ALMA's 66 giant radio telescopes (NRAO)

Last month a dozen journalists from around North America were guests of the National Radio Astronomy Observatory and got to take a trip to the Atacama Desert in Chile to attend the inauguration of the Atacama Large Millimeter/submillimeter Array observatory — ALMA, for short.

It was, in no uncertain terms, a radio astronomer’s paradise.

Join one radio astronomer, Dr. Nicole Gugliucci, on her trip to the 5100-meter-high Chajnantor Plateau to visit the ALMA sites in this video, also featuring NRAO’s Tania Burchell, John Stoke, Charles Blue and the Planetary Society’s Mat Kaplan.

Read about this and more on Nicole’s NoisyAstronomer blog.

ALMA will open a new window on celestial origins, capturing never-before seen details about the very first stars and galaxies in the Universe, probing the heart of our galaxy, and directly imaging the formation of planets. It is the largest leap in telescope technology since Galileo first aimed a lens on the Universe.

Gigantic Plasma Jets Pour From the Heart of Hercules A

Combined Hubble (optical) and VLA (radio) images show enormous radio jets shooting out from the galaxy Hercules A

Combined Hubble (optical) and VLA (radio) images show enormous radio jets shooting out from the galaxy Hercules A

Talk about pouring your heart out! Astronomers using Hubble’s Wide Field Camera 3 and the recently-upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico have identified gigantic jets of plasma, subatomic particles and magnetic fields blasting out of the center of Hercules A, a massive galaxy 2 billion light-years away.

The image above is a combination of optical images from Hubble and radio data gathered by the multi-dish VLA. If our eyes could see in the high-energy spectrum of radio, this is what Hercules A — the otherwise ordinary-looking elliptical galaxy in the center — would really look like.

(Of course, if we could see in radio our entire sky would be a very optically busy place!)

Also known as 3C 348, Hercules A is incredibly massive — nearly 1,000 times the mass of our Milky Way galaxy with a similarly scaled-up version of  a supermassive black hole at its center. Due to its powerful gravity and intense magnetic field Hercules A’s monster black hole is firing superheated material far out into space from its rotational poles. Although invisible in optical light, these jets are bright in radio wavelengths and are thus revealed through VLA observations.

Traveling close to the speed of light, the jets stretch for nearly 1.5 million light-years from both sides of the galaxy. Ring-shaped structures within them suggest that occasional strong outbursts of material have occurred in the past.

Announced on November 29, these findings illustrate the combined imaging power of two of astronomy’s most valuable and cutting-edge tools: Hubble and the newly-updated VLA. The video below shows how it was all done… check it out.

Read more on the NRAO press release here.

Image credits: NASA, ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA). Source: NRAO.

36-Dish Australian Telescope Array Opens for Business

Three of 36 antennas of the ASKAP array. Credit: Alexander Cherney

The Australian Square Kilometer Array Pathfinder (ASKAP) is now standing tall in the outback of Western Australia, and will officially be turned on and open for business on Friday, October 5, 2012 . This large array is made up of 36 identical antennas, each 12 meters in diameter, spread out over 4,000 square meters but working together as a single instrument. ASKAP is designed to survey the whole sky very quickly, and astronomers expect to do studies of the sky that could never have been done before.

Below is a beautiful timelapse of the the ASKAP array. The photographer who put the video together, Alexander Cherney says the footage seen here may be quite unique because after the telescope testing phase is completed, any electronic equipment including cameras may not be used near the telescope.


ASKAP provides a wide field-of-view with a large spectral bandwidth and fast survey speed with its phased-array feed or “radio camera,” rather than ‘single pixel feeds’ to detect and amplify radio waves. This new technology allows telescopes to scan the sky more quickly than with traditional methods covers 30 square degrees – a thousand times the size of the full Moon in the sky.

“This will make ASKAP a very powerful survey radio telescope, a 100 times more powerful than any previous survey telescope,” said Brian Boyle, director of the SKA for Australia’s national science agency, speaking to Universe Today in interview earlier this year.

It will provide excellent coverage in a southern hemisphere location, and the radio quiet site at the Murchison Radio Observatory will make it an unprecedented synoptic telescope, according to the ASKAP website, and scientists expect to make advances in understanding galaxy formation and the evolution of the Universe.

While ASKAP will provide advances on its own, later, the dishes will be combined with 60 additional dishes to form part of the world’s largest radio telescope, The Square Kilometer Array. Construction of the SKA is due to begin in 2016.

You can see what the ASKAP looks like anytime by going to their webcam, plus there will be a webcast of the opening ceremonies on Friday at 12 noon – 1pm Western Australian Standard Time, which is 04:00 GMT Friday October 5, 2012 in GMT (midnight US EDT).

Researchers Send Mars Some Radar Love

A radar map of Mars’ major volcanic regions created by the Arecibo Observatory in Puerto Rico (John Harmon et al., NAIC)

Even though we currently have several missions exploring Mars both from orbit and on the ground, there’s no reason that robots should be having all the fun; recently a team of radio astronomers aimed the enormous 305-meter dish at Puerto Rico’s Arecibo Observatory at Mars, creating radar maps of the Red Planet’s volcanic regions and capturing a surprising level of detail for Earth-based observations.

The team, led by John Harmon of the National Astronomy and Ionosphere Center, bounced radar waves off Mars from Arecibo’s incredibly-sensitive dish, targeting the volcanic Tharsis, Elysium, and Amazonis regions. Depolarized radar imagery best reveals surface textures; the rougher and less uniform a surface is, the brighter it appears to radar while smooth, flat surfaces appear dark.

What the radar maps portray are very bright — and therefore rough — areas on most of the major volcanoes, although some regions do appear dark, such as the summit of Pavonis Mons.

This likely indicates a covering by smoother, softer material, such as dust or soil. This is actually in line with previous observations of the summit of Pavonis Mons made with the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, which showed the summit to appear curiously soft-edged and “out-of-focus”, creating a blurry optical illusion of sorts.

It’s thought that the effect is the result of the build-up of dust over millennia, carried across the planet by dust storms but remaining in place once settled because the Martian wind is just so extremely thin — especially at higher altitudes.

The team also found bright areas located away from the volcanoes, indicating rough flows elsewhere, while some smaller volcanoes appeared entirely dark — again, indicating a possible coating of smooth material like dust or solidified lava flows.

The resolution of the radar maps corresponds to the wavelength of the signals emitted from Arecibo; the 12.6 centimeter signal allows for surface resolution of Mars of about 3 km.

The team’s paper was published in the journal Icarus on July 25. Read more on the Red Planet Report here.

The iconic 305-meter radar telescope at Arecibo Observatory in Puerto Rico