New Horizons Spies Pluto’s Neighbor Quaoar

Now more than a year after its historic flyby of Pluto, the New Horizons spacecraft continues to speed through the Kuiper Belt. It’s currently on a beeline towards its next target of exploration, a KBO called 2014 MU69. But during its travels, New Horizons spotted another KBO, one of Pluto’s pals, Quaoar.

This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.
This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.

When these images were taken (in July 2016), Quaoar was approximately 4 billion miles (6.4 billion kilometers) from the Sun and 1.3 billion miles (2.1 billion kilometers) from New Horizons.

The animated sequence, above, (click the image if it isn’t animating in your browser) shows composite images taken by New Horizons’ Long Range Reconnaissance Imager (LORRI) at four different times over July 13-14: “A” on July 13 at 02:00 Universal Time; “B” on July 13 at 04:08 UT; “C” on July 14 at 00:06 UT; and “D” on July 14 at 02:18 UT. The New Horizons team explained that each composite includes 24 individual LORRI images, providing a total exposure time of 239 seconds and making the faint object easier to see.

Quaoar ( pronounced like “Kwa-war”) is about 690 miles or 1,100 kilometers in diameter, about half the size of Pluto. It was discovered on June 4, 2002 by astronomers Mike Brown and Chad Trujillo from Caltech, and at the time of its discovery, it was the largest object found in the Solar System since the discovery of Pluto. Quaoar’s discovery was one of the things that spurred the discussion of whether Pluto should continue to be classified as a planet or not.

But Quaoar is an interesting object in its own right and the New Horizons team said the oblique views of it that New Horizons can see – where LORRI sees only a portion of Quaoar’s illuminated surface — is very different from the nearly fully illuminated view of it that is visible from Earth. Comparing Quaoar from the two very different perspectives gives mission scientists a valuable opportunity to study the light-scattering properties of Quaoar’s surface.

If you’re thinking, “Why don’t we send a mission to Quaoar, or Sedna or Eris?” you aren’t alone. New Horizons team member Alex Parker has obviously been thinking about it. Parker tweeted that for a New Horizons-like mission it would take about 13 and a half years to reach Quaoar if it could be launched in December 2016. “Otherwise, we have to wait another 11 years for the next Jupiter assist window,” he said.

Um, NASA, can we put this on the schedule for 2027?

In the meantime, the images and data that New Horizons gathered during the Pluto flyby in July 2015 are still trickling back to Earth. The image below is a stunning view of Pluto’s methane snowcaps, visible at the terminator, showing the region north of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. This image was taken about 45 minutes before New Horizons’ closest approach to Pluto on July 14, 2015.

This area is south of Pluto's dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn't water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.
This area is south of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn’t water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

See all of the latest photos sent back from our robot in the outer reaches of our Solar System at the New Horizons website.

The (Possible) Dwarf Planet 2007 OR10

Over the course of the past decade, more and more objects have been discovered within the Trans-Neptunian region. With every new find, we have learned more about the history of our Solar System and the mysteries it holds. At the same time, these finds have forced astronomers to reexamine astronomical conventions that have been in place for decades.

Consider 2007 OR10, a Trans-Neptunian Object (TNO) located within the scattered disc that at one time went by the nicknames of “the seventh dwarf” and “Snow White”. Approximately the same size as Haumea, it is believed to be a dwarf planet, and is currently the largest object in the Solar System that does not have a name.

Discovery and Naming:

2007 OR10 was discovered in 2007 by Meg Schwamb, a PhD candidate at Caltech and a graduate student of Michael Brown, while working out of the Palomar Observatory. The object was colloquially referred to as the “seventh dwarf” (from Snow White and the Seven Dwarfs) since it was the seventh object to be discovered by Brown’s team (after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005).

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

At the time of its discovery, the object appeared to be very large and very white, which led to Brown giving it the other nickname of “Snow White”. However, subsequent observation has revealed that the planet is actually one of the reddest in the Kuiper Belt, comparable only to Haumea. As a result, the nickname was dropped and the object is still designated as 2007 OR10.

The discovery of 2007 OR10 would not be formally announced until January 7th, 2009.

Size, Mass and Orbit:

A study published in 2011 by Brown – in collaboration with A.J. Burgasser (University of California San Diego) and W.C. Fraser (MIT) – 2007 OR10’s diameter was estimated to be between 1000-1500 km. These estimates were based on photometry data obtained in 2010 using the Magellan Baade Telescope at the Las Campanas Observatory in Chile, and from spectral data obtained by the Hubble Space Telescope.

However, a survey conducted in 2012 by Pablo Santos Sanz et al. of the Trans-Neptunian region produced an estimate of 1280±210 km based on the object’s size, albedo, and thermal properties. Combined with its absolute magnitude and albedo, 2007 OR10 is the largest unnamed object and the fifth brightest TNO in the Solar System. No estimates of its mass have been made as of yet.

2007 OR10 also has a highly eccentric orbit (0.5058) with an inclination of 30.9376°. What this means is that at perihelion, it is roughly 33 AU (4.9 x 109 km/30.67 x 109 mi) from our Sun while at aphelion, it is as distant as 100.66 AU (1.5 x 1010 km/9.36 x 1010 mi). It also has an orbital period of 546.6 years, which means that the last time it was at perihelion was 1857 and it won’t reach aphelion until 2130. As such, it is currently the second-farthest known large body in the Solar System, and  will be farther out than both Sedna and Eris by 2045.


According to the spectral data obtained by Brown, Burgasser and Fraser, 2007 OR10 shows infrared signatures for both water ice and methane, which indicates that it is likely similar in composition to Quaoar. Concurrent with this, the reddish appearance of 2007 OR10 is believed to be due to presence of tholins in the surface ice, which are caused by the irradiation of methane by ultraviolet radiation.

The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar is also seen as an indication of the possible existence of a tenuous methane atmosphere, which would slowly evaporate into space when the objects are closer to the Sun. Although 2007 OR10 comes closer to the Sun than Quaoar, and is thus warm enough that a methane atmosphere should evaporate, its larger mass makes retention of an atmosphere just possible.

Also, the presence of water ice on the surface is believed to imply that the object underwent a brief period of cryovolcanism in its distant past. According to Brown, this period would have been responsible not only for water ice freezing on the surface, but for the creation of an atmosphere that included nitrogen and carbon monoxide. These would have been depleted rather quickly, and a tenuous atmosphere of methane would be all that remains today.

However, more data is required before astronomers can say for sure whether or not 2007 OR10 has an atmosphere, a history of cryovolcanism, and what its interior looks like. Like other KBOs, it is possible that it is differentiated between a mantle of ices and a rocky core. Assuming that there is sufficient antifreeze, or due to the decay of radioactive elements, there may even be a liquid-water ocean at the core-mantle boundary.


Though it is too difficult to resolve 2007 OR10’s size based on direct observation, based on calculations of 2007 OR10’s albedo and absolute magnitude, many astronomers believe it to be of sufficient size to have achieved hydrostatic equilibrium. As Brown stated in 2011, 2007 OR10 “must be a dwarf planet even if predominantly rocky”, which is based on a minimum possible diameter of 552 km and what is believed to be the conditions under which hydrostatic equilibrium occurs in cold icy-rock bodies.

That same year, Scott S. Sheppard and his team (which included Chad Trujillo) conducted a survey of bright KBOs (including 2007 OR10) using the Palomar Observatory’s 48 inch Schmidt telescope. According to their findings, they determined that “[a]ssuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets.”

Currently, nothing is known of 2007 OR10’s mass, which is a major factor when determining if a body has achieved hydrostatic equilibrium. This is due in part to there being no known satellite(s) in orbit of the object, which in turn is a major factor in determining the mass of a system. Meanwhile, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced.

Alas, much remains to be learned about 2007 OR10. Much like it’s Trans-Neptunian neighbors and fellow KBOs, a lot will depend on future missions and observations being able to learn more about its size, mass, composition, and whether or not it has any satellites. However, given its extreme distance and fact that it is currently moving further and further away, opportunities to observe and explore it via flybys will be limited.

However, if all goes well, this potential dwarf planet could be joining the ranks of such bodies as Pluto, Eris, Ceres, Haumea and Makemake in the not-too-distant future. And with luck, it will be given a name that actually sticks!

We have many interesting articles on Dwarf Planets, the Kuiper Belt, and Plutoids here at Universe Today. Here’s Why Pluto is no longer a planet and how astronomers are predicting Two More Large Planets in the outer Solar System.

Astronomy Cast also has an episode all about Dwarf Planets titled, Episode 194: Dwarf Planets.

For more information, check out the NASA’s Solar System Overview: Dwarf Planets, and the Jet Propulsion Laboratory’s Small-Body Database, as well as Mike Browns Planets.


The Dwarf Planet Quaoar

The vast Kuiper Belt, which orbits at the outer edge of our Solar System, has been the site of many exciting discoveries in the past decade or so. Otherwise known as the Trans-Neptunian region, small bodies have been discovered here that have confounded our notions of what constitutes a planet and thrown our entire classification system for a loop. Of these, the most famous (and controversial) discovery was undoubtedly Eris.

First observed in 2005 by Mike Brown and his team, the discovery of Eris overturned decades of astronomical conventions. But both before and since then, many other “dwarf planets“, “plutoids” and “Trans-Neptunian Objects” (TNOs) have been found that further illustrated the need for reclassification. This includes the Kuiper Belt Object (KBO) 5000 Quaoar (or just Quaoar), which was actually discovered three years before Eris.

Discovery and Naming:

Quaoar was discovered on June 4th, 2002 by astronomers Chad Trujillo and Michael Brown of the California Institute of Technology, using images that were obtained with the Samuel Oschin Telescope at Palomar Observatory. The discovery was announced on October 7th, 2002, at a meeting of the American Astronomical Society. At the time, the object was designated as 2002 LM60, but would soon be renamed by Brown and Caltech his team.

Consistent with the IAU conventions for naming non-resonant Kuiper Belt Objects after creator deities, the object was given the name Quaoar after the Tongva creator god. The Tongva people (otherwise known as the Mission Indians) are native to the area around Los Angeles, where the discovery of Quaoar was made.

Images of Quaoar taken by the Oschin Telescope at Palomar, California, USA. Credit: Chad Trujillo & Michael Brown (Caltech)
Images of Quaoar taken using the Oschin Telescope at the Palomar Observatory, California. Credit: Chad Trujillo & Michael Brown (Caltech)

Size, Mass and Orbit:

Given its distance, accurate measurements of Quaoar have been difficult to obtain. In 2004, Brown and Trujillo made direct measurements of the object with the Hubble Space Telescope and came up with an estimated diameter of  1260 ± 190 km.

However, these estimates were subsequently revised downward in 2013 by teams using a stellar occultation, and with data obtained with the Herschel Observatory’s PACS instrument and the Spectral and Photometric Imaging Receiver (SPIRE) at the University of Lethbridge, Alberta.

Combining this information, estimates of its diameter were then changed to between 1110 ± 5 km and 1074±38 km. By these estimates, Quaoar was the largest object to be discovered in the Solar System since the discovery of Pluto. However, it would later be supplanted by the discoveries of Eris, Haumea, and Makemake.

In addition, new techniques and a greater knowledge of KBOs led scientists to conclude that the 2004 HST size estimate for Quaoar was approximately 40% too large, and that a more proper estimate would be about 900 km. Using a weighted average of the SST and corrected HST estimates, Quaoar, as of 2010, is now believed to be about 890±70 km in diameter.

Given these dimensions, Quaoar is roughly one-twelfth the diameter of Earth, one third the diameter of the Moon, and half the size of Pluto. And with an estimated mass of 1.4 ± 0.1 × 1021 kg, Quaoar is about as massive as Pluto’s moon Charon, equivalent to 0.12 times the mass of Eris, and approximately 2.5 times as massive as Orcus. 

Quaoar orbit around the Sun varies slightly, ranging from 45.114 AU (6.75 x 109 km / 4.19 x 109 mi) at aphelion to 41.695 AU (6.24 x 10 km9/3.88 x 109 mi) at perihelion. Quaoar has an orbital period of 284.5 years, and a sidereal rotation period of about 17.68 hours.

Its orbit is also nearly circular and moderately inclined at approximately 8°, which is typical for the population of small classical KBOs, but exceptional among the large KBO. Pluto, Makemake, Haumea, Orcus, Varuna, and Salacia are all on highly inclined, more eccentric orbits.

At 43 AU and with a near-circular orbit, Quaoar is not significantly perturbed by Neptune; unlike Pluto, which is in 2:3 orbital resonance with Neptune. As of 2008, Quaoar was only 14 AU from Pluto, which made it the closest large body to the Pluto–Charon system. By Kuiper Belt standards this is very close.

The orbit of Quaoar (yellow) and various other cubewanos compared to the orbit of Neptune (blue) and Pluto (pink)
The orbit of Quaoar (yellow) and various other cubewanos compared to the orbit of Neptune (blue) and Pluto (pink). Credit: Wikipedia Commons/kheider


At the time of its discovery, not much was known about Kuiper belt objects. However, subsequent findings about this region have led scientists to conclude that the surface of Quaoar is likely to be highly similar to those of the icy satellites of Uranus and Neptune. This includes a low albedo, which could be as low as 0.1, which may be an indication that fresh ice has disappeared from its surface.

The surface is also moderately red, meaning that Quaoar is relatively more reflective in the red and near-infrared than in the blue. A 2006 model of internal heating via radioactive decay suggested that, unlike Orcus, Quaoar may not be capable of sustaining an internal ocean of liquid water at the mantle-core boundary.

Observations of Quaoar in the near infrared spectrum have indicated the presence of a small quantities of methane and ethane ice (about 5%). Scientists have also been surprised to find signs of crystalline ice on Quaoar, which is caused by sublimation and refreezing of water. This would indicate that the temperature rose to at least -160 °C (110 K or -260 °F) sometime in the last ten million years.

Artist's impression of the size difference between Quaoar Credit: NASA/JPL-Caltech
Artist’s impression of the size difference between Quaoar, Pluto, Sedna, Earth and the Moon. Credit: NASA/JPL-Caltech

Speculation as to what could have caused Quaoar to heat up from its natural temperature of -220 °C (55 K or -360 °F) have led to theories ranging from a barrage of mini-meteors that could have raised the temperature, to the presence of cryovolcanism. The latter theory, which is the more widely accepted one, holds that cryovolcanism occurred as a result of the decay of radioactive elements within Quaoar’s core.

Some scientist believe that Quaoar was nearly twice its current size before an ancient collision with another object, possibly Pluto, stripped it of its outer mantle. If true, it would mean that Quaoar once had more ice on its surface, and possibly a liquid water ocean at the core-mantle boundary.


Quaoar has one known satellite, which was discovered on February 22nd, 2007. It orbits its primary at a distance of 14,500 km and has an orbital eccentricity of 0.14. Based on the assumption that the moon has the same albedo and density as Quaoar, the apparent magnitude of the moon indicates that it is 74 km in diameter and has 1/2000 the mass of Quaoar.

In terms of where it came from, Brown has suggested that it may be a remnant from a collision, which lost most of its mantle ice in the process. The choice for naming the moon was deferred to the Tongva people themselves, who selected the sky god Weymot, who is the son of Quaoar in Tongva mythology. The name became official on October 4th, 2009, with the publication of the Minor Planet Center’s latest issue.

Artist’s impression of the moderately red Quaoar and its moon Weywot. Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)
Artist’s impression of the moderately red Quaoar and its moon Weywot.
Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)


According to the IAU, a dwarf planet is any celestial body that orbits a star, is massive enough to have become spherical under the power of its own gravity, but has not cleared its path of planetesimals, and is not the satellite of another object. Also, it must have enough mass to overcome its own compression and be in hydrostatic equilibrium.

Because Quaoar is a binary object, the mass of the system can be calculated from the orbit of the secondary. From this, Quaoar’s estimated density of 2.2 g/cm³ and its estimated diameter of 820 – 960 km suggest that it is large enough to be a dwarf planet.

This is based in part on estimates made by Mike Brown, who has claimed that rocky bodies around 900 km in diameter are sufficient to relax into hydrostatic equilibrium, whereas icy bodies can reach this state with diameters somewhere between 200 and 400 km.

In addition, Quaoar’s mass (which is believed to be greater than 1.6×1021 kg) is also greater than what the 2006 IAU draft definition of a planet claims is “usually” required for being in hydrostatic equilibrium (5×1020 kg, 800 km). Light-curve-amplitude analysis shows only small deviations, suggesting that Quaoar is indeed a spheroid with small albedo spots.

Therefore, while it is not currently classified as a dwarf planet, it is considered a viable candidate. In the coming years, it may go on to join the ranks of Pluto, Eris, Haumea and Makemake as being officially recognized as such by the IAU and other astronomical bodies.


So far, no missions have been planned to Quaoar. While some have advocated sending the New Horizons mission to visit Quaoar and/or Sedna now that it’s flyby of Pluto is complete, NASA has declared this to be impossible. Much like Sedna, Quaoar is too far from the trajectory of the spacecraft, but also insists that both KBOs will be high on the list of candidate targets for future missions to the outer Solar System.

It has further been calculated that a flyby mission to Quaoar could take 13.57 years, using a Jupiter gravity assist and based on the launch dates of December 25th, 2016, November 22nd, 2027, December 22nd, 2028, January 22nd, 2030, or December 20thm, 2040. During any of these launch windows, Quaoar would be at a distance of 41 to 43 AU from the Sun by the time the spacecraft arrived.

In the meantime, all we can do is wait, and continue to observe Quaoar and its fellow Kuiper Belt Objects from afar. In the coming years, a decision is also likely to be made about whether or not it will be included on the list of the Solar System’s acknowledge dwarf planets.

We have written many articles about Quaoar for Universe Today. Here’s an article about the discovery of Quaoar, and here’s an article about the Kuiper Belt.

If you’d like more info about Dwarf Planets, check out Solar System Exploration Guide on Dwarf Planets, and here’s a link to an article aboutthe dwarf planet, Ceres.

We’ve also recorded an entire episode of Astronomy Cast entitled Episode 194: Dwarf Planets and an interview with Mike Brown himself!


What Is The Kuiper Belt?

Hubble Finds Smallest Kuiper Belt Object

Dr. Mike Brown is a professor of planetary astronomy at Caltech. He’s best known as the man who killed Pluto, thanks to his team’s discovery of Eris and other Kuiper Belt Objects. We asked him to help us explain this unusual region of our solar system.

Soon after Pluto was discovered by Clyde Tombaugh on February 18th, 1930, astronomers began to theorize that Pluto was not alone in the outer Solar System. In time, they began to postulate the existence of other objects in the region, which they would discover by 1992. In short, the existence of the Kuiper Belt – a large debris field at the edge of the Solar System – was theorized before it was ever discovered.


The Kuiper Belt (also known as the Edgeworth–Kuiper belt) is a region of the Solar System that exists beyond the eight major planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, in that it contains many small bodies, all remnants from the Solar System’s formation.

But unlike the Asteroid Belt, it is much larger – 20 times as wide and 20 to 200 times as massive. As Mike Brown explains:

The Kuiper Belt is a collection of bodies outside the orbit of Neptune that, if nothing else had happened, if Neptune hadn’t formed or if things had gone a little bit better, maybe they could have gotten together themselves and formed the next planet out beyond Neptune. But instead, in the history of the solar system, when Neptune formed it led to these objects not being able to get together, so it’s just this belt of material out beyond Neptune.

Discovery and Naming:

Shortly after Tombaugh’s discovery of Pluto, astronomers began to ponder the existence of a Trans-Neptunian population of objects in the outer Solar System. The first to suggest this was Freckrick C. Leonard, who began suggesting the existence of “ultra-Neptunian bodies” beyond Pluto that had simply not been discovered yet.

That same year, astronomer Armin O. Leuschner suggested that Pluto “may be one of many long-period planetary objects yet to be discovered.” In 1943, in the Journal of the British Astronomical Association, Kenneth Edgeworth further expounded on the subject. According to Edgeworth, the material within the primordial solar nebula beyond Neptune was too widely spaced to condense into planets, and so rather condensed into a myriad of smaller bodies.

In 1951, in an article for the journal Astrophysics, that Dutch astronomer Gerard Kuiper speculated on a similar disc having formed early in the Solar System’s evolution. Occasionally one of these objects would wander into the inner Solar System and become a comet. The idea of this “Kuiper Belt” made sense to astronomers. Not only did it help to explain why there were no large planets further out in the Solar System, it also conveniently wrapped up the mystery of where comets came from.

In 1980, in the Monthly Notices of the Royal Astronomical Society, Uruguayan astronomer Julio Fernández speculated that a comet belt that lay between 35 and 50 AU would be required to account for the observed number of comets.

Following up on Fernández’s work, in 1988 a Canadian team of astronomers (team of Martin Duncan, Tom Quinn and Scott Tremaine) ran a number of computer simulations and determined that the Oort cloud could not account for all short-period comets. With a “belt”, as Fernández described it, added to the formulations, the simulations matched observations.

The bodies in the Kuiper Belt. Credit: Don Dixon
The bodies in the Kuiper Belt. Credit: Don Dixon

In 1987, astronomer David Jewitt (then at MIT) and then-graduate student Jane Luu began using the telescopes at the Kitt Peak National Observatory in Arizona and the Cerro Tololo Inter-American Observatory in Chile to search the outer Solar System. In 1988, Jewitt moved to the Institute of Astronomy at the University of Hawaii, and Luu later joined him to work at the University’s Mauna Kea observatory.

After five years of searching, on August 30th, 1992, Jewitt and Luu announced the “Discovery of the candidate Kuiper belt object(15760) 1992 QB1. Six months later, they discovered a second object in the region, (181708) 1993 FW. Many, many more would follow…

In their 1988 paper, Tremaine and his colleagues referred to the hypothetical region beyond Neptune as the “Kuiper Belt”, apparently due to the fact that Fernández used the words “Kuiper” and “comet belt” in the opening sentence of his paper. While this has remained the official name, astronomers sometimes use the alternative name Edgeworth-Kuiper belt to credit Edgeworth for his earlier theoretical work.

However, some astronomers have gone so far as to claim that neither of these names are correct. For example, Brian G. Marsden – a British astronomer and the longtime director of the Minor Planet Center (MPC) at the Harvard-Smithsonian Center for Astrophysics – claimed that “Neither Edgeworth nor Kuiper wrote about anything remotely like what we are now seeing, but Fred Whipple (the American astronomer who came up with the “dirty snowball” comet hypothesis) did”.

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Kuiper Belt and the Oort Cloud, on a logarithmic scale. Credit: NASA

Furthermore, David Jewitt commented that, “If anything … Fernández most nearly deserves the credit for predicting the Kuiper Belt.” Because of the controversy associated with its name, the term trans-Neptunian object (TNO) is recommended for objects in the belt by several scientific groups. However, this is considered insufficient by others, since this can mean any object beyond the orbit of Neptune, and not just objects in the Kuiper Belt.


There have been more than a thousand objects discovered in the Kuiper Belt, and it’s theorized that there are as many as 100,000 objects larger than 100 km in diameter. Given to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine.

However, spectrographic studies conducted of the region since its discovery have generally indicated that its members are primarily composed of ices: a mixture of light hydrocarbons (such as methane), ammonia, and water ice – a composition they share with comets. Initial studies also confirmed a broad range of colors among KBOs, ranging from neutral grey to deep red.

This suggests that their surfaces are composed of a wide range of compounds, from dirty ices to hydrocarbons. In 1996, Robert H. Brown et al. obtained spectroscopic data on the KBO 1993 SC, revealing its surface composition to be markedly similar to that of Pluto, as well as Neptune’s moon Triton, possessing large amounts of methane ice.

8 largest Kuiper Belt Objects
Artist’s comparison of the eight largest Kuiper Belt Objects. Credit: Lexicon/NASA Images

Water ice has been detected in several KBOs, including 1996 TO66, 38628 Huya and 20000 Varuna. In 2004, Mike Brown et al. determined the existence of crystalline water ice and ammonia hydrate on one of the largest known KBOs, 50000 Quaoar. Both of these substances would have been destroyed over the age of the Solar System, suggesting that Quaoar had been recently resurfaced, either by internal tectonic activity or by meteorite impacts.

Keeping Pluto company out in the Kuiper belt, are many other objects worthy of mention. Quaoar, Makemake, Haumea, Orcus and Eris are all large icy bodies in the Belt. Several of them even have moons of their own. These are all tremendously far away, and yet, very much within reach.


On January 19th, 2006, NASA launched the New Horizons space probe for the sake of studying Pluto, its moons and one or two other Kuiper Belt objects. As of January 15th, 2015, the spacecraft began its approach to the dwarf planet, and is expected to make a flyby by July 14th, 2015. When it reaches the area, astronomers are expecting several interesting photographs of the Kuiper Belt as well.

Even more exciting is the fact that surveys of other solar systems indicate that our Solar System isn’t unique. Since 2006, there have been other “Kuiper Belts” (i.e. icy debris belts) discovered around nine other star systems. These appear to fall into two categories: wide belts, with radii of over 50 AU, and narrow belts (like our own Kuiper Belt) with radii of between 20 and 30 AU and relatively sharp boundaries.

According to infrared surveys, an estimated 15-20% of solar-type stars are believed to have massive Kuiper-Belt-like structures. Most of these appear to be fairly young, but two star systems – HD 139664 and HD 53143, which were observed by the Hubble Space Telescope in 2006 – are estimated to be 300 million years old.

Vast and unexplored, the Kuiper Belt is the source of many comets, and is believed to be the point of origin for all periodic or short-period comet (i.e. ones with an orbit lasting 200 years or less). The most famous of these is Halley’s Comet, which has been active for the past 16,000–200,000 years.

Future of the Kuiper Belt:

When he initially speculated about the existence of a belt of objects beyond Neptune, Kuiper indicated that such a belt probably did not exist anymore. Of course, subsequent discoveries have proven this to be wrong. But one thing that Kuiper was definitely right about was the idea that these Trans-Neptunian Objects won’t last forever. As Mike Brown explains:

We call it a belt, but it’s a very wide belt. It’s something like 45 degrees in extent across the sky – this big swath of material that’s just been churned and churned by Neptune. And these days, instead of making a bigger and bigger body, they’re just colliding and slowly grinding down into dust. If we come back in another hundred million years, there’ll be no Kuiper Belt left.

Given the potential for discovery, and what up-close examination could teach us about the early history of our Solar System, many scientists and astronomers look forward to the day when we can examine the Kuiper Belt in more detail. Here’s hoping that the New Horizons mission is just the beginning of future decades of research into this mysterious region!

We have many interesting articles here at Universe Today on the subject on the Outer Solar System and Trans-Neptunion Objects (TNOs).

And be sure to check out this article on the planet Eris, the latest dwarf planet and the largest TNO to be discovered.

And astronomers are expecting to discover two more large planets in our Solar System.

Universe Today also has a full-length interview with Mike Brown from Caltech.