Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings

In 2016, astronomers working for the European Southern Observatory (ESO) confirmed the existence of a terrestrial planet around Earth’s closest stellar neighbor – Proxima Centauri. The discovery of this nearby extrasolar planet (Proxima b) caused no shortage of excitement because, in addition to being similar in size to Earth, it was found to orbit within the star’s habitable zone (HZ).

Thanks to an INAF-led team, a second exoplanet (a super-Earth) was found early this year around Proxima Centauri using the Radial Velocity Method. Based on the separation between the two planets, another INAF-led team attempted to observe this planet using the Direct Imaging Method. While not entirely successful, their observations raise the possibility that this planet has a system of rings around it, much like Saturn.

Continue reading “Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings”

What is a Generation Ship?

The dream of traveling to another star and planting the seed of humanity on a distant planet… It is no exaggeration to say that it has captivated the imaginations of human beings for centuries. With the birth of modern astronomy and the Space Age, scientific proposals have even been made as to how it could be done. But of course, living in a relativistic Universe presents many challenges for which there are no simple solutions.

Of these challenges, one of the greatest has to do with the sheer amount of energy necessary to get humans to another star within their own lifetimes. Hence why some proponents of interstellar travel recommend sending spacecraft that are essentially miniaturized worlds that can accommodate travelers for centuries or longer. These “Generation Ships” (aka. worldships or Interstellar Arks) are spacecraft that are built for the truly long haul.

Continue reading “What is a Generation Ship?”

Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years

M-type (red dwarf) stars are cooler, low-mass, low-luminosity objects that make up the vast majority of stars in our Universe – accounting for 85% of stars in the Milky Way galaxy alone. In recent years, these stars have proven to be a treasure trove for exoplanet hunters, with multiple terrestrial (aka. Earth-like) planets confirmed around the Solar System’s nearest red dwarfs.

But what is even more surprising is the fact that some red dwarfs have been found to have planets that are comparable in size and mass to Jupiter orbiting them. A new study conducted by a team of researchers from the University of Central Lancashire (UCLan) has addressed the mystery of how this could be happening. In essence, their work shows that gas giants only take a few thousand years to form.

Continue reading “Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years”

New Instrument is Searching for Planets Around Alpha Centauri

Alpha Centauri is the closest star system to us, at 4.37 light-years (about 25 trillion miles) away. In 2016, astronomers discovered an exoplanet orbiting one of the three stars in the Alpha Centauri system. Spurred on by that discovery, the European Southern Observatory (ESO) has developed a new instrument to find any other planets that might be in the Alpha Centauri system, and it’s busy looking right now.

Continue reading “New Instrument is Searching for Planets Around Alpha Centauri”

The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now

In August of 2016, astronomers from the European Southern Observatory (ESO) announced the discovery of an exoplanet in the neighboring system of Proxima Centauri. The news was greeted with consider excitement, as this was the closest rocky planet to our Solar System that also orbited within its star’s habitable zone. Since then, multiple studies have been conducted to determine if this planet could actually support life.

Unfortunately, most of the research so far has indicated that the likelihood of habitability are not good. Between Proxima Centauri’s variability and the planet being tidally-locked with its star, life would have a hard time surviving there. However, using lifeforms from early Earth as an example, a new study conducted by researchers from the Carl Sagan Institute (CSI) has shows how life could have a fighting chance on Proxima b after all.

Continue reading “The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now”

Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live

In the course of searching for extra-solar planets, some very interesting finds have been made. Some of them have even occurred within our own galactic neighborhood. Just two years ago, astronomers from the Red Dots and CARMENES campaigns announced the discovery of Proxima b, a rocky planet that orbits within the habitable zone of our nearest stellar neighbor – Proxima Centauri.

This rocky world, which may be habitable, remains the closest exoplanet ever discovered to our Solar System. A few days ago (on Nov. 14th), Red Dots and CARMENES announced another find: a rocky planet orbiting Barnard’s star, which is just 6 light years from Earth. This planet, Barnard’s Star b, is now the second closest exoplanet to our Solar System, and the closest planet to orbit a single star.

Continue reading “Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live”

The Closest Planet Ever Discovered Outside the Solar System Could be Habitable With a Dayside Ocean

In of August of 2016, astronomers from the European Southern Observatory (ESO) confirmed the existence of an Earth-like planet around Proxima Centauri – the closest star to our Solar System. In addition, they confirmed that this planet (Proxima b) orbited within its star’s habitable zone. Since that time, multiple studies have been conducted to determine if Proxima b could in fact be habitable.

Unfortunately, most of this research has not been very encouraging. For instance, many studies have indicated that Proxima b’s sun experiences too much flare activity for the planet to sustain an atmosphere and liquid water on its surface.  However, in a new NASA-led study, a team of scientists has investigated various climate scenarios that indicate that Proxima b could still have enough water to support life.

Continue reading “The Closest Planet Ever Discovered Outside the Solar System Could be Habitable With a Dayside Ocean”

What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?

Humanity has long dreamed about sending humans to other planets, even before crewed spaceflight became a reality. And with the discovery of thousands exoplanets in recent decades, particularly those that orbit within neighboring star systems (like Proxima b), that dream seems closer than ever to becoming a reality. But of course, a lot of technical challenges need to be overcome before we can hope to mount such a mission.

In addition, a lot of questions need to be answered. For example, what kind of ship should we send to Proxima b or other nearby exoplanets? And how many people would we need to place aboard that ship? The latter question was the subject of a recent paper written by a team of French researchers who calculated the minimal number of people that would be needed in order to ensure that a healthy multi-generational crew could make the journey to Proxima b.

The study, titled “Computing the minimal crew for a multi-generational space travel towards Proxima Centauri b“, recently appeared online and will soon be published in the Journal of the British Interplanetary Society. It was conducted by Dr. Frederic Marin, an astrophysicist from the Astronomical Observatory of Strasbourg, and Dr. Camille Beluffi, a particle physicist working with the scientific start-up Casc4de.

The Project Orion concept for a nuclear-powered spacecraft. Credit: silodrome.co

Their study was the second in a series of papers that attempt to evaluate the viability of an interstellar voyage to Proxima b. The first study, titled “HERITAGE: a Monte Carlo code to evaluate the viability of interstellar travels using a multi-generational crew“, was also published in the August 2017 issue of the Journal of the British Interplanetary Society.

Dr. Marin and Dr. Beluffi begin their latest study by considering the various concepts that have been proposed for making an interstellar journey – many of which were explored in a previous UT article, “How Long Would it Take to Get to the Nearest Star?“. These include the more traditional approaches, like Nuclear Pulse Propulsion (i.e. the Orion Project) and fusion rockets (i.e. the Daedalus Project), and also the more modern concept of Breakthrough Starshot.

However, such missions are still a long way off and/or do not involve crewed spaceflight (which is the case with Starshot). As such, Dr. Marin and Dr. Beluffi also took into account missions that will be launching in the coming years like NASA’s  Parker Solar Probe. This probe will reach record-breaking orbital velocities of up to 724,205 km/h, which works out to about 200 km/s (or 0.067% the speed of light).

As Dr. Marin told Universe Today via email:

“This purely and entirely rely on the technology available at the time of the mission. If we would create a spacecraft right now, we could only reach about 200 km/s, which translates into 6300 years of travel. Of course technology is getting better with time and by the time a real interstellar project will be created, we can expect to have improved the duration by one order of magnitude, i.e. 630 years. This is speculative as technology as yet to be invented.”

Weighing in at 60,000 tons when fully fuelled, Daedalus would dwarf even the Saturn V rocket. Credit: Adrian Mann

With their baseline for speed and travel time established – 200 km/s-¹ and 6300 years – Dr. Marin and Dr. Beluffi then set out to determine the minimum number of people needed to ensure that a healthy crew arrived at Proxima b. To do this, the pair conducted a series of Monte Carlo simulations using a new code created by Dr. Marin himself. This mathematical technique takes into account chance events in decision making to produce distributions of possible outcomes.

“We are using a new numerical software that I have created,” said Dr. Marin. “It is named HERITAGE, see the first paper of the series. It is a stochastic Monte Carlo code that accounts for all possible outcomes of space simulations by testing every randomized scenario for procreation, life and death. By looping the simulation thousands of times, we get statistical values that are representative of a real space travel for a multi-generational crew. The code accounts for as many biological factors as possible and is currently being developed to include more and more physics.”

These biological factors include things like the number of women vs. men, their respective ages, life expectancy, fertility rates, birth rates, and how long the crew would have to reproduce. It also took into account some extreme possibilities, which included accidents, disasters, catastrophic events, and the number of crew members likely to be effected by them.

They then averaged the results of these simulations over 100 interstellar journeys based on these various factors and different values to determine the size of the minimum crew. In the end, Dr. Marin and Dr. Beluffi concluded that under conservative conditions, a minimum of 98 crew members would be needed to sustain a multi-generational voyage to the nearest star system with a potentially-habitable exoplanet.

Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory

Any less than that, and the likelihood of success would drop off considerably. For instance, with an initial crew of 32, their simulations indicated that the chances for success would reach 0%, largely because such a small community would make inbreeding inevitable. While this crew might eventually arrive at Proxima b, they would not be a genetically healthy crew, and therefore not a very good way to start a colony! As Dr. Marin explained:

“Our simulations allows us to predict with great precision the minimum size of the initial crew that will leave for centuries-long space travels. By allowing the crew to evolve under a list of adaptive social engineering principles (namely, yearly evaluations of the vessel population, offspring restrictions and breeding constraints), we show in this paper that it is possible to create and maintain a healthy population virtually indefinitely.”

While the technology and resources needed to make an interstellar voyage is still generations away, studies of this kind could be of profound significance for those missions – if and when they occur. Knowing in advance the likelihood that such a mission will succeed, and what will increase that likelihood to the point that success is virtually guaranteed, will also increase the likelihood that such missions are mounted.

This study and the one that preceded it are also significant in that they are the first to take into account key biological factors (like procreation) and how they will affect a multi-generational crew. As Dr. Marin concluded:

“Our project aims to provide realistic simulations of multi-generational space ships in order to prepare future space exploration, in a multidisciplinary project that utilizes the expertise of physicists, astronomers, anthropologists, rocket engineers, sociologists and many others. HERITAGE is the first ever dedicated Monte Carlo code to compute the probabilistic evolution of a kin-based crew aboard an interstellar ship, which allows one to explore whether a crew of a proposed size could survive for multiple generations without any artificial stocks of additional genetic material. Determining the minimum size of the crew is an essential step in the preparation of any multi-generational mission, affecting the resources and budget required for such an endeavor but also with implications for sociological, ethical and political factors. Furthermore, these elements are essential in examining the creation of any self-sustaining colony – not only humans establishing planetary settlements, but also with more immediate impacts: for example, managing the genetic health of endangered species or resource allocation in restrictive environments.”

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

Dr. Marin was also quoted recently in an article in The Conversation about the goals of his and Dr. Beluffi’s project, which is all about determining what is needed to ensure the health and safety of future interstellar voyagers. As he said in the article:

“Of the 3757 exoplanets that have been detected, the closest Earth-like planet lies at 40 trillion kilometers from us. At 1% of the speed of light, which is far superior to the highest velocities achieved by state-of-the-art spacecraft, it would still take 422 years for ships to reach their destination. One of the immediate consequences of this is that interstellar voyages cannot be achieved within a human lifespan. It requires a long-duration space mission, which necessitates finding a solution whereby the crew survive hundreds of years in deep space. This is the goal of our project: to establish the minimum size of a self-sustaining, long duration space mission, in terms of both hardware and population. By doing so, we intend to obtain scientifically-accurate estimates of the requirements for multi-generational interstellar travel, unlocking the future of human space exploration, migration and habitation.”

In the coming decades, next-generation telescopes are expected to discover thousands more exoplanets. But more importantly, these high-resolution instruments are also expected to reveal things about exoplanets that will allow us to characterize them. These will include spectra from their atmospheres that will let scientists know with greater certainty if they are actually habitable.

With more candidates to choose from, we will be all the more prepared for the day when interstellar voyages can be launched. When that time comes, our scientists will be armed with the necessary information for ensuring that the people that arrive will be hail, hearty, and prepared to tackle the challenges of exploring a new world!

Further Reading: arXiv, arXiv (2), The Conversation

Chandra Observatory Checks to Make Sure Alpha Centauri is Safe, You Know, in Case We Decide to Visit

At distance of just 4.367 light years, the triple star system of Alpha Centauri (Alpha Centauri A+B and Proxima Centauri) is the closest star system to our own. In 2016, researchers from the European Southern Observatory announced the discovery of Proxima b, a rocky planet located within the star’s habitable zone and the closest exoplanet to our Solar System. However, whether or not Alpha Centauri has any potentially habitable planets remains a mystery.

Between 2012 and 2015, three possible candidates were announced in this system, but follow-up studies cast doubt on their existence. Looking to resolve this mystery, Tom Ayres – a senior research associate and Fellow at the University of Colorado Boulder’s Center for Astrophysics and Space Astronomy – conducted a study of Alpha Centauri based on over a decade’s worth of observations, with encouraging results!

The results of this study were presented at the 232rd meeting of the American Astronomical Society, which took place in Denver, Colorado, from June 3rd to June 7th. The study was based on ten years worth of monitoring of Alpha Centauri, which was provided the Chandra X-ray Observatory. This data indicated that any planets that orbit Alpha Centauri A and B are not likely to be bombarded by large amounts of X-ray radiation.

The two brightest stars of the Centaurus constellation – (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Credit: Wikipedia Commons/Skatebiker

This is good news as far as Alpha Centauri’s potential habitability goes since X-rays and related Space Weather effects are harmful to unprotected life. Not only can high doses of radiation be lethal to living creatures, they can also strip away planetary atmospheres. According to data provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter, this  is precisely what happened to Mars between 4.2 and 3.7 billion years ago.

As Tom Ayres explained in a recent Chandra press release:

“Because it is relatively close, the Alpha Centauri system is seen by many as the best candidate to explore for signs of life. The question is, will we find planets in an environment conducive to life as we know it?”

The stars in the Alpha Centauri system (A and B) are quite similar to our Sun and orbit relatively close to each other. Alpha Centauri A, a G2 V (yellow dwarf) star, is the most Sun-like of the two, being 1.1 times the mass and 1.519 times the luminosity of the Sun. Alpha Centauri B is somewhat smaller and cooler, at 0.907 times the Sun’s mass and 0.445 times its visual luminosity.

As such, the odds that the system could support an Earth-like planet are pretty good, especially around Alpha Centauri A. According to the Chandra data, the prospects for life (based on X-ray bombardment) are actually better for any planet orbiting Alpha Centauri A than for the Sun, and Alpha Centauri B is only slightly worse. This is certainly good news for those who are hoping that a potentially habitable exoplanet is found in close proximity to the Solar System.

The respective habitable zones around Alpha Centauri A and B. Credit: Planetary Habitability Laboratory

When the existence of Proxima b was first announced, there was naturally much excitement. Not only did this planet orbit within it’s star’s habitable zone, but it was the closest known exoplanet to Earth. Subsequent studies, however, revealed that Proxima Centauri is variable and unstable by nature, which makes it unlikely that Proxima b could maintain an atmosphere or life on its surface. As Ayers explained:

“This is very good news for Alpha Cen AB in terms of the ability of possible life on any of their planets to survive radiation bouts from the stars. Chandra shows us that life should have a fighting chance on planets around either of these stars.”

Meanwhile, astronomers continue to search for exoplanets around Alpha Centauri A and B, but without success. The problem with this system is the orbit of the pair, which has drawn the two bright stars close together in the sky over the past decade. To help determine if Alpha Centauri was hospitable to life, astronomers began conducting a long-term observation campaign with Chandra in 2005.

As the only X-ray observatory capable of resolving Alpha Centauri A and B during its current close orbital approach, Chandra observed these two main stars every six months for the past thirteen years. These long-term measurements captured a full cycle of increases and decreases in X-ray activity, in much the same way that the Sun has an 11-year sunspot cycle.

What these observations showed was that any planet orbiting within the habitable zone of A would receive (on average) a lower dose of X-rays compared to similar planets around the Sun. For planets orbiting withing the habitable zone of B, the X-ray dose they received would be about five times higher. Meanwhile, planets orbiting within Proxima Centauri’s habitable zone would get an average of 500 times more X-rays, and 50,000 times more during a big flare.

In addition to providing encouraging hints about Alpha Centauri’s possible habitability, the X-ray observations provided by Chandra could also go a long way towards informing astronomers about our Sun’s X-ray activity. Understanding this is key to learning more about space weather and the threat they can pose to human infrastructure, as well as other technologically-advanced civilizations.

In the meantime, astronomers continue to search for exoplanets around Alpha Centauri A and B. Knowing that they have a good chance of supporting life will certainly make any future exploration of this system (like Project Starshot) all the more lucrative!

Some of the study’s results also appeared in the January issue in the Research Notes of the American Astronomical Society, titled “Alpha Centauri Beyond the Crossroads“. And be sure to enjoy this video about Alpha Centauri’s potential habitability, courtesy of the Chandra X-ray Observatory:

Further Reading: Chandra X-ray Observatory

The DARKNESS Instrument Will Block Stars and Reveal Their Planets. 100 Million Times Fainter than the Star

The hunt for planets beyond our Solar System has led to the discovery of thousands of candidates in the past few decades. Most of these have been gas giants that range in size from being Super-Jupiters to Neptune-sized planets. However, several have also been determined to be “Earth-like” in nature, meaning that they are rocky and orbit within their stars’ respective habitable zones.

Unfortunately, determining what conditions might be like on their surfaces is difficult, since astronomers are unable to study these planets directly. Luckily, an international team led by UC Santa Barbara physicist Benjamin Mazin has developed a new instrument known as DARKNESS. This superconducting camera, which is the world’s largest and most sophisticated, will allow astronomers to detect planets around nearby stars.

The team’s study which details their instrument, titled “DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy“, recently appeared in the Publications of the Astronomy Society of the Pacific. The team was led by Benjamin Mazin, the Worster Chair in Experimental Physics at UCSB, and also includes members from NASA’s Jet Propulsion Laboratory, the California Institute of Technology, the Fermi National Accelerator Laboratory, and multiple universities.

The DARKNESS instrument is the worlds most advanced camera and will enable the detection of planets around the nearest stars. Credit: UCSB

Essentially, it is extremely difficult for scientists to study exoplanets directly because of the interference caused by their stars. As Mazin explained in a recent UCSB press release, “Taking a picture of an exoplanet is extremely challenging because the star is much brighter than the planet, and the planet is very close to the star.” As such, astronomers are often unable to analyze the light being reflected off of a planet’s atmosphere to determine its composition.

These studies would help place additional constraints on whether or not a planet is potentially habitable. At present, scientists are forced to determine if a planet could support life based on its size, mass, and distance from its star. In addition, studies have been conducted that have determined whether or not water exists on a planet’s surface based on how its atmosphere loses hydrogen to space.

The DARK-speckle Near-infrared Energy-resolved Superconducting Spectrophotometer (aka. DARKNESS), the first 10,000-pixel integral field spectrograph, seeks to correct this. In conjunction with a large telescope and adaptive optics, it uses Microwave Kinetic Inductance Detectors to quickly measure the light coming from a distant star, then sends a signal back to a rubber mirror that can form into a new shape 2,000 times a second.

MKIDs allow astronomers to determine the energy and arrival time of individual photons, which is important when it comes to distinguishing a planet from scattered or refracted light. This process also eliminates read noise and dark current – the primary sources of error in other instruments – and cleans up the atmospheric distortion by suppressing the starlight.

UCSB physicist Ben Mazin, who led the development of the DARKNESS camera. Credit: Sonia Fernandez

Mazin and his colleagues have been exploring MKIDs technology for years through the Mazin Lab, which is part of the UCSB’s Department of Physics. As Mazin explained:

“This technology will lower the contrast floor so that we can detect fainter planets. We hope to approach the photon noise limit, which will give us contrast ratios close to 10-8, allowing us to see planets 100 million times fainter than the star. At those contrast levels, we can see some planets in reflected light, which opens up a whole new domain of planets to explore. The really exciting thing is that this is a technology pathfinder for the next generation of telescopes.”

DARKNESS is now operational on the 200-inch Hale Telescope at the Palomar Observatory near San Diego, California, where it is part of the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph. During the past year and a half, the team has conducted four runs with the DARKNESS camera to test its contrast ratio and make sure it is working properly.

In May, the team will return to gather more data on nearby planets and demonstrate their progress. If all goes well, DARKNESS will become the first of many cameras designed to image planets around nearby M-type (red dwarf) stars, where many rocky planets have been discovered in recent years. The most notable example is Proxima b, which orbits the nearest star system to our own (Proxima Centauri, roughly 4.25 light years away).

The Palomar Observatory, where the DARKNESS camera is currently installed. Credit: IPTF/Palomar Observatory

“Our hope is that one day we will be able to build an instrument for the Thirty Meter Telescope planned for Mauna Kea on the island of Hawaii or La Palma,” Mazin said. “With that, we’ll be able to take pictures of planets in the habitable zones of nearby low mass stars and look for life in their atmospheres. That’s the long-term goal and this is an important step toward that.”

In addition to the study of nearby rocky planets, this technology will also allow astronomers to study pulsars in greater detail and determine the redshift of billions of galaxies, allowing for more accurate measurements of how fast the Universe is expanding. This, in turn, will allow for more detailed studies of how our Universe has evolved over time and the role played by Dark Energy.

These and other technologies, such as NASA’s proposed Starshade spacecraft and Stanford’s mDot occulter, will revolutionize exoplanet studies in the coming years. Paired with next-generation telescopes – such as the James Webb Space Telescope and the Transiting Exoplanet Survey Satellite (TESS), which recently launched – astronomers will not only be able to discover more in the way exoplanets, but will be able to characterize them like never before.

Further Reading: UC Santa BarbaraPublications of the Astronomy Society of the Pacific