Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets

When a young solar system gets going it’s little more than a young star and a rotating disk of debris. Accepted thinking says that the swirling debris is swept up in planet formation. But a new study says that much of the matter in the disk could face a different fate.

It may not have the honour of becoming part of a nice stable planet, orbiting placidly and reliably around its host star. Instead, it’s simply discarded. It’s ejected out of the young, still-forming solar system to spend its existence as interstellar objects or as rogue planets.

Continue reading “Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets”

Astronomers see an Accretion Disk Where Planets are About to Form

Planet formation is notoriously difficult to study.  Not only does the process take millions of years, making it impossible to observe in real time, there are myriad factors that play into it, making it difficult to distinguish cause and effect.  What we do know is that planets form from features known as protoplanetary disks, which are made up of gas and dust surrounding young stars.  And now a team using ALMA have found a star system that has a protoplanetary disk and enough variability to help them nail down some details of how exactly the process of planet formation works.

Continue reading “Astronomers see an Accretion Disk Where Planets are About to Form”

Spiral-shaped Planetary Disks Should Be More Common. Giant Planets Might Be Disrupting Their Formation

Planetary system formation is a process that involves astounding and complex forces.  Humans have only just started trying to understand what goes on in this extraordinarily important phase of the development of new worlds.  As such, we are continuing to make new discoveries and come up with better models that better fit the observations that our instruments are able to collect.

The most recent of those improved models was announced by a research team at the University of Warwick.  A paper in Astrophysical Journal Letters explores possible reasons for why there is a lack of spiral structures in newly formed protoplanetary discs.  Their answer is a simple one: massive planets that form on the outside of the disc might be disrupting the spiral formation.

Continue reading “Spiral-shaped Planetary Disks Should Be More Common. Giant Planets Might Be Disrupting Their Formation”

Astronomers See a Newly Forming Planetary Disk That’s Continuing to Feed On Material from its Nebula

Over the last few years, astronomers have observed distant solar systems in their early stages of growth. ALMA (Atacama Large Millimeter/submillimeter Array) has captured images of young stars and their disks of material. And in those disks, they’ve spotted the tell-tale gaps that signal the presence of growing young planets.

As they ramped up their efforts, astronomers were eventually able to spot the young planets themselves. All those observations helped confirm our understanding of how young solar systems form.

But more recent research adds another level of detail to the nebular hypothesis, which guides our understanding of solar system formation.

Continue reading “Astronomers See a Newly Forming Planetary Disk That’s Continuing to Feed On Material from its Nebula”

Weekly Space Hangout: October 14, 2020, Drs. Jane Huang & Jonathan Williams, Protoplanetary Disks

This week we are joined by Dr. Jane Huang and Dr. Jonathan Willams from the Center for Astrophysics, Harvard & Smithsonian (CfA). Dr. Huang, Dr. Williams, and their team recently discovered some surprising information about the size and shape of some protoplanetary disks.

Continue reading “Weekly Space Hangout: October 14, 2020, Drs. Jane Huang & Jonathan Williams, Protoplanetary Disks”