Cassini Finds that Titan is Building the Chemicals that Might Have Led to Life on Earth

Titan, Saturn’s largest moon, has been a source of mystery ever since scientists began studying it over a century ago. These mysteries have only deepened with the arrival of the Cassini-Huygens mission in the system back in 2004. In addition to finding evidence of a methane cycle, prebiotic conditions and organic chemistry, the Cassini-Huygens mission has also discovered that Titan may have the ingredient that help give rise to life.

Such is the argument made in a recent study by an international team of scientists. After examining data obtained by the Cassini space probe, they identified a negatively charged species of molecule in Titan’s atmosphere. Known as “carbon chain anions”, these molecules are thought to be building blocks for more complex molecules, which could played a key role in the emergence of life of Earth.

The study, titled “Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere“, recently appeared in The Astrophysical Journal Letters. The team included researchers from University College in London, the University of Grenoble, Uppsalla University, UCL/Birkbeck, the University of Colorado, the Swedish Institute of Space Physics, the Southwest Research Institute (SwRI), and NASA’s Goddard Space Flight Center.

Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong

As they indicate in their study, these molecules were detected by the Cassini Plasma Spectrometer (CAPS) as the probe flew through Titan’s upper atmosphere at an distance of 950 – 1300 km (590  – 808 mi) from the surface. They also show how the presence of these molecules was rather unexpected, and represent a considerable challenge to current theories about how Titan’s atmosphere works.

For some time, scientists have understood that within Titan’s ionosphere, nitrogen, carbon and hydrogen are subjected to sunlight and energetic particles from Saturn’s magnetosphere. This exposure drives a process where these elements are transformed into more complex prebiotic compounds, which then drift down towards the lower atmosphere and form a thick haze of organic aerosols that are thought to eventually reach the surface.

This has been the subject of much interest, since the process through which simple molecules form complex organic ones has remained something of a mystery to scientists. This could be coming to an end thanks to the detection of carbon chain anions, though their discovery was altogether unexpected. Since these molecules are highly reactive, they are not expected to last long in Titan’s atmosphere before combining with other materials.

However, the data showed that the carbon chains became depleted closer to the moon, while precursors to larger aerosol molecules underwent rapid growth. This suggests that there is a close relationship between the two, with the chains ‘seeding’ the larger molecules. Already, scientists have held that these molecules were an important part of the process that allowed for life to form on Earth, billions of years ago.

A halo of light surrounds Saturn’s moon Titan in this backlit picture, showing its atmosphere. Credit: NASA/JPL/Space Science Institute

However, their discovery on Titan could be an indication of how life begins to emerge throughout the Universe. As Dr. Ravi Desai, University College London and the lead author of the study, explained in an ESA press release:

“We have made the first unambiguous identification of carbon chain anions in a planet-like atmosphere, which we believe are a vital stepping-stone in the production line of growing bigger, and more complex organic molecules, such as the moon’s large haze particles. This is a known process in the interstellar medium, but now we’ve seen it in a completely different environment, meaning it could represent a universal process for producing complex organic molecules.”

Because of its dense nitrogen and methane atmosphere and the presence of some of the most complex chemistry in the Solar System, Titan is thought by many to be similar to Earth’s early atmosphere. Billions of years ago, before the emergence of microorganisms that allowed for subsequent build-up of oxygen, it is likely that Earth had a thick atmosphere composed of nitrogen, carbon dioxide and inert gases.

Therefore, Titan is often viewed as a sort planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied. However, the prospect of finding a universal pathway towards the ingredients for life has implications that go far beyond Earth. In fact, astronomers could start looking for these same molecules on exoplanets, in an attempt to determine which could give rise to life.

This illustration shows Cassini above Saturn’s northern hemisphere prior to one of its 22 Grand Finale dives. Credit: NASA/JPL-Caltech

Closer to home, the findings could also be significant in the search for life in our own Solar System. “The question is, could it also be happening within other nitrogen-methane atmospheres like at Pluto or Triton, or at exoplanets with similar properties?” asked Desia. And Nicolas Altobelli, the Project Scientist for the Cassini-Huygens mission, added:

These inspiring results from Cassini show the importance of tracing the journey from small to large chemical species in order to understand how complex organic molecules are produced in an early Earth-like atmosphere. While we haven’t detected life itself, finding complex organics not just at Titan, but also in comets and throughout the interstellar medium, we are certainly coming close to finding its precursors.

Cassini’s “Grande Finale“, the culmination of its 13-year mission around Saturn and its system of moons, is set to end on September 15th, 2017. In fact, as of the penning of this article, the mission will end in about 1 month, 18 days, 16 hours, and 10 minutes. After making its final pass between Saturn’s rings, the probe will be de-orbited into Saturn’s atmosphere to prevent contamination of the system’s moons.

However, future missions like the James Webb Space Telescope, the ESA’s PLATO mission and ground-based telescopes like ALMA are expected to make some significant exoplanet finds in the coming years. Knowing specifically what kinds of molecules are intrinsic in converting common elements into organic molecules will certainly help narrow down the search for habitable (or even inhabited) planets!

Further Reading: ESA, The Astrophysical Journal Letters

Exploring Titan with Balloons and Landers

Last week – from Monday, February 27th to Wednesday, March 1st – NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. In the course of the many presentations, speeches and panel discussions, NASA’s shared its many plans for the future of space exploration with the international community.

Among the more ambitious of these was a proposal to explore Titan using an aerial explorer and a lander. Building upon the success of the ESA’s Cassini-Huygen mission, this plan would involve a balloon that would explore Titan’s surface from low altitude, along with a Mars Pathfinder-style mission that would explore the surface.

Ultimately, the goal a mission to Titan would be to explore the rich organic chemical environment the moon has, which presents a unique opportunity for planetary researchers. For some time, scientists have understood that Titan’s surface and atmosphere have an abundance of organic compounds and all the prebiotic chemistry necessary for life to function.

Artist depiction of Huygens landing on Titan. Credit: ESA

The presentation, which was titled “Aerial Mobility : The Key to Exploring Titan’s Rich Chemical Diversity” was chaired by Ralph Lorenz from the Johns Hopkins Applied Physics Laboratory, and co-chaired by Elizabeth Turtle (also from John Hopkins APL) and Jason Barnes from the Dept. of Physics at the University of Idaho. As Turtle explained to Universe Today via email, Titan presents some exciting opportunities for a next-generation mission:

“Titan’s of particular interest because the abundant and complex organic chemistry can teach us about chemical interactions that could have occurred here on Earth (and elsewhere?) leading to the development of life.  Furthermore, not only does Titan have an interior liquid-water ocean, but there will also have been opportunities for  organic material to have mixed with liquid water at Titan’s surface, for example impact craters and possibly cryovolcanic eruptions.  The combination of organic material with liquid water, of course, increases astrobiological potential.”

For this reason, the exploration of Titan has been a scientific goal for decades. The only question is how best to go about exploring Titan’s unique environment. During previous Decadal Surveys – such as the Campaign Strategy Working Group (CSWG) on Prebiotic Chemistry in the Outer Solar System, of which Lorenz was a contributor – has suggested that a mobile aerial vehicle (such as an airship or a balloon) would well-suited to the task.

However, such vehicles would be unable to study Titan’s methane lakes, which are one of the most exciting draws of the moon as far as research into prebiotic chemistry goes. What’s more, an aerial vehicle would not be able to conduct in-situ chemical analysis of the surface, much like what the Mars Exploration Rovers (Spirit, Opportunity and Curiosity) have been doing on Mars – and with immense results!

The ESA’s TALISE (Titan Lake In-situ Sampling Propelled Explorer) on the left, and NASA’s Titan Mare Explorer (TiME) on the right. Credit: bisbos.com

At the same time, Lorenz and his colleagues examined concepts for the exploration of Titan’s hydrocarbon seas – like the proposed Titan Mare Explorer (TiME) capsule. As one of several finalists of NASA’s 2010 Discovery competition, this concept called for the deployment of nautical robot to Titan in the coming decades, where it would study its methane lakes to learn more about the methane cycle and search for signs of organic life.

While such a proposal would be cost-effective and presents some very exciting opportunities for research, it also has some limitations. For instance, during the 2020s-2030s, Titan’s northern hemisphere will be experiencing its winter season; at which point the thickness of its atmosphere will make direct-to-Earth communications and Earth views impossible. On top of that, a nautical vehicle would preclude the exploration of Titan’s land surfaces.

These offer some of the most likely prospects for studying Titan’s advanced chemical evolution, including Titan’s dune sands. As a windswept region, this area likely has material deposited from all over Titan and may also contain aqueously altered materials. Much as the Mars Pathfinder landing site was selected so it could collect samples from a wide area, such as location would be an ideal site for a lander.

As such, Lorenz and his colleagues advocated the type of mission that was articulated in the 2007 Flagship Study, which called for a Montgolfière balloon for regional exploration and a Pathfinder-like lander. This would provide the opportunity to conduct surface imaging at resolutions that are impossible from orbit (due to the thick atmosphere) as well as investigating the surface chemistry and interior structure of the moon.

Artist’s conception of a possible structure for underground liquid reservoirs on Saturn moon’s Titan. Credit: ESA/ATG medialab

So while the balloon would gather high-resolution geographical data of the moon, the lander could conduct seismological surveys that would characterize the thickness of the ice above Titan’s internal water ocean. However, a lander mission would be limited in terms of range, and the surface of Titan presents problems for mobility. This would make multiple landers, or a relocatable lander, the most desired option.

“Potential targets include areas where we can measure solid surface materials, the composition of which is still not well known, Titan’s dune sands, for example,” said Turtle. “Detailed in situ analysis is required to determine their composition.  The lakes and seas are also intriguing; however, in the nearer term (missions arriving in the 2030s) most of those will be in winter darkness.  So, exploring them would likely have to wait until the 2040s.”

This mission concept would also take advantage of several technological advances that have been made in recent years. As Lorenz explained in the course of the presentation:

“Heavier-than-air mobility at Titan is in fact highly efficient, moreover, improvements in autonomous aircraft in the two decades since the CSWG make such exploration a realistic prospect. Multiple in-situ landers delivered by an aerial vehicle like an airplane or a lander with aerial mobility to access multiple sites, would provide the most desirable scientific capability, highly relevant to the themes of origins, workings, and life.”

Updated maps of Titan, based on the Cassini imaging science subsystem. Credit: NASA/JPL/Space Science Institute

Lorenz, Turtle and Barnes will also be presenting these findings at the upcoming 48th Lunar and Planetary Science Conference – which will be taking place from March 20th to 24th in The Woodlands, Texas. There they will be joined by additional members of the Johns Hopkins APL and the University of Idaho, as well as panelists from NASA’s Goddard Space Flight Center, Pennsylvania State University, and Honeybee Robotics.

However, addressing some additional challenges not raised at the 2050 Vision Workshop, they will be presenting a slight twist on their idea. Instead of a balloon and multiple landers, they will present a mission concept involving a “Dragonfly” qaudcopter. This four-rotor vehicle would be able to take advantage of Titan’s thick atmosphere and low gravity to obtain samples and determine the surface composition in multiple geological settings.

This concept also incorporates a lot of recent advances in technology, which include modern control electronics and advances in commerical unmanned aerial vehicle (UAV) designs. On top of that, a quadcopter would do away with chemically-powered retrorockets and could power-up between flights, giving it a potentially much longer lifespan.

These and other concepts for exploring Saturn’s moon Titan are sure to gain traction in the coming years. Given the many mysteries locked away on this world – with includes abundant water ice, prebiotic chemistry, a methane cycle, and a subsurface ocean that is likely to be a prebiotic environment – it is certainly a popular target for scientific research.

Further Reading: USRA, USRA (2), USRA (3)

Prebiotic Molecules May Form in Exoplanet Atmospheres

Before there was life as we know it, there were molecules. And after many seemingly unlikely steps these molecules underwent a magnificent transition: they became complex systems with the capability to reproduce, pass along information and drive chemical reactions. But the host of steps leading up to this transition has remained one of science’s beloved mysteries.

New research suggests that the building blocks of life — prebiotic molecules — may form in the atmospheres of planets, where the dust provides a safe platform to form on and various reactions with the surrounding plasma provide enough energy necessary to create life.

“If the formation of life is like a jigsaw puzzle — a very big and complicated jigsaw puzzle — I like to imagine prebiotic molecules as some of the individual puzzle pieces,” said St. Andrews professor Dr. Craig Stark. “Putting the pieces together you form more complicated biological structures making a clearer, more recognizable picture. And when all the pieces are in place the resulting picture is life.”

We currently think prebiotic molecules form on the tiny ice grains in interstellar space. While this may seem to contradict the readily accepted belief that life in space is impossible, the surface of the grain actually provides a nice hospitable environment for life to form as it protects molecules from harmful space radiation.

“Molecules are formed on the dust surface from the adsorption of atoms and molecules from the surrounding gas,” Stark told Universe Today. “If the appropriate ingredients to make a particular molecular compound are available, and the conditions are right, you’re in business.”

By “conditions,” Stark is hinting at the second ingredient necessary: energy. The simple molecules that populate the galaxy are relatively stable; without an incredible amount of energy they won’t form new bonds. It has been thought that life could form in lightning strikes and volcanic eruptions for this very reason.

So Stark and his colleagues turned their eyes to the atmospheres of exoplanets, where dust is immersed in a plasma full of positive ions and negative electrons. Here the electrostatic interactions of dust particles with plasma may provide the high energy necessary to form prebiotic compounds.

In a plasma the dust grain will soak up the free electrons quickly, becoming negatively charged. This is because electrons are lighter, and therefore quicker, than positive ions. Once the dust grain is negatively charged it will attract a flux of positive ions, which will accelerate toward the dust particle and collide with more energy than they would in a neutral environment.

In order to test this, the authors studied an example atmosphere, which allowed them to examine the various processes that may turn the ionized gas into a plasma as well as determine if the plasma would lead to energetic enough reactions.

“As a proof of principle we looked at the sequence of chemical reactions that lead to the formation of the simplest amino acid glycine,” Stark said. Amino acids are great examples of prebiotic molecules because they are required for the formation of proteins, peptides and enzymes.

Their models showed that “the plasma ions can indeed be accelerated to sufficient energies that exceed the activation energies for the formation of formaldehyde, ammonia, hydrogen cyanide and ultimately the amino acid glycine,” Stark told Universe Today. “This may not have been possible if the plasma was absent.”

The authors demonstrated that with modest plasma temperatures, there is enough energy to form the prebiotic molecule glycine. Higher temperatures may also enable more complex reactions and therefore more intricate prebiotic molecules.

Stark and his colleagues demonstrated a viable pathway to the formation of a prebiotic molecule, and therefore life, in seemingly common conditions. While the origin of life may remain one of science’s beloved mysteries, we continue to gain a better understanding, one puzzle piece at a time.

The paper has been accepted for publication in the journal Astrobiology and is available for download here.