Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life

The search for planets beyond our Solar System (extrasolar planets) has grown by leaps and bounds in the past decade. A total of 4,514 exoplanets have been confirmed in 3,346 planetary systems, with another 7,721 candidates awaiting confirmation. At present, astrobiologists are largely focused on the “low hanging fruit” approach of looking for exoplanets that are similar in size, mass, and atmospheric composition to Earth (aka. “Earth-like.”)

However, astrobiologists are also interested in finding examples of “exotic life,” the kind that emerged under conditions that are not “Earth-like.” For example, a team of astronomers from the University of Cambridge recently conducted a study that showed how life could emerge on ocean-covered planets with hydrogen-rich atmospheres (aka. “Hycean” planets). These findings could have significant implications for exoplanet studies and the field of astrobiology.

Continue reading “Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life”

How Would Rain be Different on an Alien World?

On Titan, Saturn’s largest moon, it rains on a regular basis. As with Earth, these rains are the result of liquid evaporating on the surface, condensing in the skies, and falling back to the surface as precipitation. On Earth, this is known as the hydrological (or water) cycle, which is an indispensable part of our climate. In Titan’s case, the same steps are all there, but it is methane that is being exchanged and not water.

In recent years, scientists have found evidence of similar patterns involving exoplanets, with everything from molten metal to lava rain! This raises the question of just how exotic the rains may be on alien worlds. Recently, a team of researchers from Havard University conducted a study where they researched how rain would differ in a diverse array of extrasolar planetary environments.

Continue reading “How Would Rain be Different on an Alien World?”

What Role do Radioactive Elements Play in a Planet’s Habitability?

To date, astronomers have confirmed the existence of 4,301 extrasolar planets in 3,192 star systems, with another 5,650 candidates awaiting confirmation. In the coming years, next-generation telescopes will allow astronomers to directly observe many of these exoplanets and place tighter constraints on their potential habitability. In time, this could lead to the discovery of life beyond our Solar System!

The only problem is, finding evidence of life requires that we know what to look for. According to a new study by an interdisciplinary team of scientists from the University of California Santa Cruz (UCSC), radioactive elements might play a role in planetary habitability. Future studies of rocky exoplanets, they argue, should therefore look for specific isotopes that indicate the presence of long-lived elements like thorium and uranium.

Continue reading “What Role do Radioactive Elements Play in a Planet’s Habitability?”

Based on Kepler Data, There’s a 95% Chance of an Earth-Like Planet Within 20 Light-Years

In the past few decades, the study of exoplanets has grown by leaps and bounds, with 4296 confirmed discoveries in 3,188 systems and an additional 5,634 candidates awaiting confirmation. Because of this, scientists have been able to get a better idea about the number of potentially-habitable planets that could be out there. A popular target is stars like our own, which are known as G-type yellow dwarfs.

Recently, an international team of scientists (led by researchers from the NASA Ames Research Center) combined data from by the now-defunct Kepler Space Telescope and the European Space Agency’s (ESA) Gaia Observatory. What this revealed is that half of the Sun-like stars in our Universe could have rocky, potentially-habitable planets, the closest of which could be in our cosmic backyard!

Continue reading “Based on Kepler Data, There’s a 95% Chance of an Earth-Like Planet Within 20 Light-Years”

How Did the TRAPPIST-1 Planets Get Their Water?

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In 2017, an international team of astronomers announced a momentous discovery. Based on years of observations, they found that the TRAPPIST-1 system (an M-type red dwarf located 40 light-years from Earth) contained no less than seven rocky planets! Equally exciting was the fact that three of these planets were found within the star’s Habitable Zone (HZ), and that the system itself has had 8 billion years to develop the chemistry for life.

At the same time, the fact that these planets orbit tightly around a red dwarf star has given rise to doubts that these three planets could maintain an atmosphere or liquid water for very long. According to new research by an international team of astronomers, it all comes down to the composition of the debris disk that the planets formed from and whether or not comets were around to distribute water afterward.

Read more

Here’s What the Climate Might Look Like on Proxima Centauri B

Located at the heart of the NASA Center for Climate Simulation (NCCS) – part of NASA’s Goddard Space Flight Center – is the Discover supercomputer, a 129,000-core cluster of Linux-based processors. This supercomputer, which is capable of conducting 6.8 petaflops (6.8 trillion) operations per second, is tasked with running sophisticated climate models to predict what Earth’s climate will look like in the future.

However, the NCCS has also started to dedicate some of the Discover’s supercomputing power to predict what conditions might be like on any of the over 4,000 planets that have been discovered beyond our Solar System. Not only have these simulations shown that many of these planets could be habitable, they are further evidence that our very notions of “habitability” could use a rethink.

Continue reading “Here’s What the Climate Might Look Like on Proxima Centauri B”

Complex Life Might Require a Very Narrow Habitable Zone

Kepler-452b

Since the Kepler Space Telescope was launched into space, the number of known planets beyond our Solar System (exoplanets) has grown exponentially. At present, 3,917 planets have been confirmed in 2,918 star systems, while 3,368 await confirmation. Of these, about 50 orbit within their star’s circumstellar habitable zone (aka. “Goldilocks Zone”) , the distance at which liquid water can exist on a planets’ surface.

However, recent research has raised the possibility that we consider to be a habitable zone is too optimistic. According to a new study that recently appeared online, titled “A Limited Habitable Zone for Complex Life“, habitable zones could be much narrower than originally thought. These finds could have a drastic impact on the number of planets scientists consider to be “potentially habitable”.

Continue reading “Complex Life Might Require a Very Narrow Habitable Zone”

Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There

In their efforts to find evidence of life beyond our Solar System, scientists are forced to take what is known as the “low-hanging fruit” approach. Basically, this comes down to determining if planets could be “potentially habitable” based on whether or not they would be warm enough to have liquid water on their surfaces and dense atmospheres with enough oxygen.

This is a consequence of the fact that existing methods for examining distant planets are largely indirect and that Earth is only one planet we know of that is capable of supporting life. But what if planets that have plenty of oxygen are not guaranteed to produce life? According to a new study by a team from Johns Hopkins University, this may very well be the case.

Continue reading “Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There”

To Find Evidence of Life on Exoplanets, Scientists Should Search for “Purple Earths”

Finding potentially habitable planets beyond our Solar System is no easy task. While the number of confirmed extra-solar planets has grown by leaps and bounds in recent decades (3791 and counting!), the vast majority have been detected using indirect methods. This means that characterizing the atmospheres and surface conditions of these planets has been a matter of estimates and educated guesses.

Similarly, scientists look for conditions that are similar to what exists here on Earth, since Earth is the only planet we know of that supports life. But as many scientists have indicated, Earth’s conditions has changed dramatically over time. And in a recent study, a pair of researchers argue that a simpler form of photosynthetic life forms may predate those that relies on chlorophyll – which could have drastic implications in the hunt for habitable exoplanets.

Continue reading “To Find Evidence of Life on Exoplanets, Scientists Should Search for “Purple Earths””

The Closest Planet Ever Discovered Outside the Solar System Could be Habitable With a Dayside Ocean

In of August of 2016, astronomers from the European Southern Observatory (ESO) confirmed the existence of an Earth-like planet around Proxima Centauri – the closest star to our Solar System. In addition, they confirmed that this planet (Proxima b) orbited within its star’s habitable zone. Since that time, multiple studies have been conducted to determine if Proxima b could in fact be habitable.

Unfortunately, most of this research has not been very encouraging. For instance, many studies have indicated that Proxima b’s sun experiences too much flare activity for the planet to sustain an atmosphere and liquid water on its surface.  However, in a new NASA-led study, a team of scientists has investigated various climate scenarios that indicate that Proxima b could still have enough water to support life.

Continue reading “The Closest Planet Ever Discovered Outside the Solar System Could be Habitable With a Dayside Ocean”