A Bunch of New Names for Pluto’s Surface Features Were Just Approved

Pluto is getting some new names. In the past, prior to the New Horizons mission, there wasn’t much to name. But now that that spacecraft has flew past Pluto and observed it up close, there’s some features that need naming.

Now the IAU (International Astronomical Union) has approved a new set of names for 14 of the dwarf planet’s surface features.

Continue reading “A Bunch of New Names for Pluto’s Surface Features Were Just Approved”

An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto

In July of 2015, NASA’s New Horizons mission made history by becoming the first spacecraft to ever conduct a flyby with Pluto. In addition to providing the world with the first up-close images of this distant world, New Horizons‘ suite of scientific instruments also provided scientists with a wealth of information about Pluto – including its surface features, composition, and atmosphere.

The images the spacecraft took of the surface also revealed unexpected features like the basin named Sputnik Planitia – which scientists saw as an indication of a subsurface ocean. In a new study led by researchers from the University of Hokkaido, the presence of a thin layer of clathrate hydrates at the base of Pluto’s ice shell would ensure that this world could support an ocean.

Continue reading “An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto”

Pluto and Charon Don’t Have Enough Small Craters

In 2015, the New Horizons mission became the first robotic spacecraft to conduct a flyby of Pluto. In so doing, the probe managed to capture stunning photos and valuable data on what was once considered to be the ninth planet of the Solar System (and to some, still is) and its moons. Years later, scientists are still poring over the data to see what else they can learn about the Pluto-Charon system.

For instance, the mission science team at the Southwest Research Institute (SwRI) recently made an interesting discovery about Pluto and Charon. Based on images acquired by the New Horizons spacecraft of some small craters on their surfaces, the team indirectly confirmed something about the Kuiper Belt could have serious implications for our models of Solar System formation.

Continue reading “Pluto and Charon Don’t Have Enough Small Craters”

New Horizons took this shot of MU69 as it sped away from its encounter

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with the Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. This latest encounter led to some stunning images of the KBO as the spacecraft made it’s approach.

But of course, these were not the last images New Horizons was going to capture of this object. While making its flyby of Ultima Thule on New Year’s Day, the spacecraft took a number of images that revealed something very interesting about Ultima Thule’s shape. Rather than consisting of two spheres that are joined together, Ultima Thule is actually made up of two segments – one that looks like a pancake, the other a walnut.

Continue reading “New Horizons took this shot of MU69 as it sped away from its encounter”

New Dwarf Planet Found in the Outskirts of the Solar System, Giving Astronomers More Ammunition to Search for Evidence of Planet 9

"The Goblin", or dwarf planet 2015 TG387 shown in comparison to our Solar System's other planets. Image: Illustration by Roberto Molar Candanosa and Scott Sheppard, courtesy of Carnegie Institution for Science.

Astronomers have found a new dwarf planet way out beyond Pluto that never gets closer than 65 AUs to the Sun. It’s nicknamed “The Goblin” which is much more interesting than its science name, 2015 TG387. The Goblin’s orbit is consistent with the much-talked-about but yet-to-be-proven Planet 9.

Continue reading “New Dwarf Planet Found in the Outskirts of the Solar System, Giving Astronomers More Ammunition to Search for Evidence of Planet 9”

New Reasons why Pluto Should be Considered a Planet After All

In 2006, during their 26th General Assembly, the International Astronomic Union (IAU) passed a resolution to adopt a formal definition for the term “planet”. According to this definition, bodies that orbit the Sun, are spherical, do not orbit other bodies, and have cleared their orbits were designated planets. Pluto, and other such bodies that did not meet all of these requirements, would thereafter be designated as “dwarf planets”.

However, according to a new study led by Philip T. Metzger – a planetary scientists from the Florida Space Institute (at the University of Central Florida) – the IAU’s standard for classifying planets is not supported by the research literature on Pluto, and is therefore invalid. For those people who have maintained that “Pluto is still planet” for the past twelve years, this is certainly good news!

Continue reading “New Reasons why Pluto Should be Considered a Planet After All”

New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and become the first spacecraft to explore some Kuiper Belt Objects (KBOs). It’s first objective will be the KBO known as 2014 MU69, which was recently given the nickname “Ultima Thule” (“ultima thoo-lee”).

Continue reading “New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019”

New Research Raises Hopes for Finding Life on Mars, Pluto and Icy Moons

Since the 1970s, when the Voyager probes captured images of Europa’s icy surface, scientists have suspected that life could exist in interior oceans of moons in the outer Solar System. Since then, other evidence has emerged that has bolstered this theory, ranging from icy plumes on Europa and Enceladus, interior models of hydrothermal activity, and even the groundbreaking discovery of complex organic molecules in Enceladus’ plumes.

However, in some locations in the outer Solar System, conditions are very cold and water is only able to exist in liquid form because of the presence of toxic antifreeze chemicals. However, according to a new study by an international team of researchers, it is possible that bacteria could survive in these briny environments. This is good news for those hoping to find evidence of life in extreme environments of the Solar System.

The study which details their findings, titled “Enhanced Microbial Survivability in Subzero Brines“, recently appeared in the scientific journal Astrobiology. The study was conducted by Jacob Heinz from the Center of Astronomy and Astrophysics at the Technical University of Berlin (TUB), and included members from Tufts University, Imperial College London, and Washington State University.

Based on new evidence from Jupiter’s moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface. Credit: NASA/JPL-Caltech

Basically, on bodies like Ceres, Callisto, Triton, and Pluto – which are either far from the Sun or do not have interior heating mechanisms – interior oceans are believed to exist because of the presence of certain chemicals and salts (such as ammonia). These “antifreeze” compounds ensure that their oceans have lower freezing points, but create an environment that would be too cold and toxic to life as we know it.

For the sake of their study, the team sought to determine if microbes could indeed survive in these environments by conducting tests with Planococcus halocryophilus, a bacteria found in the Arctic permafrost. They then subjected this bacteria to solutions of sodium, magnesium and calcium chloride as well as perchlorate, a chemical compound that was found by the Phoenix lander on Mars.

They then subjected the solutions to temperatures ranging from +25°C to -30°C through multiple freeze and thaw cycles. What they found was that the bacteria’s survival rates depended on the solution and temperatures involved. For instance, bacteria suspended in chloride-containing (saline) samples had better chances of survival compared to those in perchlorate-containing samples – though survival rates increased the more the temperatures were lowered.

For instance, the team found that bacteria in a sodium chloride (NaCl) solution died within two weeks at room temperature. But when temperatures were lowered to 4 °C (39 °F), survivability began to increase and almost all the bacteria survived by the time temperatures reached -15 °C (5 °F). Meanwhile, bacteria in the magnesium and calcium-chloride solutions had high survival rates at –30 °C (-22 °F).

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

The results also varied for the three saline solvents depending on the temperature. Bacteria in calcium chloride (CaCl2) had significantly lower survival rates than those in sodium chloride (NaCl) and magnesium chloride (MgCl2)between 4 and 25 °C (39 and 77 °F), but lower temperatures boosted survival in all three.  The survival rates in perchlorate solution were far lower than in other solutions.

However, this was generally in solutions where perchlorate constituted 50% of the mass of the total solution (which was necessary for the water to remain liquid at lower temperatures), which would be significantly toxic. At concentrations of 10%, bacteria was still able to grow. This is semi-good news for Mars, where the soil contains less than one weight percent of perchlorate.

However, Heinz also pointed out that salt concentrations in soil are different than those in a solution. Still, this could be still be good news where Mars is concerned, since temperatures and precipitation levels there are very similar to parts of Earth – the Atacama Desert and parts of Antarctica. The fact that bacteria have can survive such environments on Earth indicates they could survive on Mars too.

In general, the research indicated that colder temperatures boost microbial survivability, but this depends on the type of microbe and the composition of the chemical solution. As Heinz told Astrobiology Magazine:

“[A]ll reactions, including those that kill cells, are slower at lower temperatures, but bacterial survivability didn’t increase much at lower temperatures in the perchlorate solution, whereas lower temperatures in calcium chloride solutions yielded a marked increase in survivability.”

This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. Credit: NASA/JPL

The team also found that bacteria did better in saltier solutions when it came to freezing and thawing cycles. In the end, the results indicate that survivability all comes down to a careful balance. Whereas lower concentrations of chemical salts meant that bacteria could survive and even grow, the temperatures at which water would remain in a liquid state would be reduced. It also indicated that salty solutions improve bacteria survival rates when it comes to freezing and thawing cycles.

Of course, the team emphasized that just because bacteria can subsist in certain conditions doesn’t mean they will thrive there. As Theresa Fisher, a PhD student at Arizona State University’s School of Earth and Space Exploration and a co-author on the study, explained:

“Survival versus growth is a really important distinction, but life still manages to surprise us. Some bacteria can not only survive in low temperatures, but require them to metabolize and thrive. We should try to be unbiased in assuming what’s necessary for an organism to thrive, not just survive.”  

As such, Heinz and his colleagues are currently working on another study to determine how different concentrations of salts across different temperatures affect bacterial propagation. In the meantime, this study and other like it are able to provide some unique insight into the possibilities for extraterrestrial life by placing constraints on the kinds of conditions that they can survive and grow in.

These studies also allow help when it comes to the search for extraterrestrial life, since knowing where life can exist allows us to focus our search efforts. In the coming years, missions to Europa, Enceladus, Titan and other locations in the Solar System will be looking for biosignatures that indicate the presence of life on or within these bodies. Knowing that life can survive in cold, briny environments opens up additional possibilities.

Further Reading: Astrobiology Magazine, Astrobiology

Pluto has “Sand Dunes”, but Instead of Sand, it’s Grains of Frozen Methane

In July of 2015, the New Horizons mission made history when it conducted the first flyby in history of Pluto. In the course of conducting its flyby, the probe gathered volumes of data about Pluto’s surface, composition, atmosphere and system of moons. It also provided breathtaking images of Pluto’s “heart”, its frozen plains, mountain chains, and it’s mysterious “bladed terrain”.

These strange features showed people for the first time how radically different the surface of Pluto is from Earth and the other planets of the inner Solar System. But strangely, they also showcased how this distant world is also quite similar to Earth. For instance, in a new study, a team of researchers working on the images from the New Horizons mission noticed “dunes” on the surface of Pluto that resemble sand dunes here on Earth.

The study, titled “Dunes on Pluto“, was recently published in the journal Science. The study was led by Matthew Telfer, a Lecturer in Physical Geography from the University of Plymouth, with significant contributions provided by Eric J. R. Parteli and Jani Radebaugh – geoscientists from the University of Cologne, and Brigham Young University, respectively.

The fine smudges on Sputnik Planum have been identified as transverse dunes because of the way they run perpendicular to the dark “wind streaks”. Credit: NASA/JPL/New Horizons

They were joined by members from the Carl Sagan Center at the SETI Institute, NASA’s Ames Research Center, the Lowell Observatory, the Southwest Research Institute (SwRI), the National Optical Astronomy Observatory, the Massachusetts Institute of Technology (MIT), the Johns Hopkins University Applied Physics Laboratory (JHUAPL), and multiple universities.

On Earth, dunes are formed by wind-blown sand that create repeated ridges in the desert or along beaches. Similar patterns have been observed along river beds and alluvial plains, where water deposits sediment over time. In all cases, dune-like formations are the result of solid particles being transported by a moving medium (i.e. air or water). Beyond Earth, such patterns have been observed on Mars, Titan, and even on Comet 67P/Churyumov-Gerasimenko.

However, when consulting images from New Horizons probe, Telfer and his colleagues noted similar formations in the Sputnik Planitia region on Pluto. This region, which constitutes the western lobe of the heart-shaped Tombaugh Regio, is essentially a massive ice-covered basin. Already, researchers have noted that the surface appears to consist of irregular polygons bordered by troughs, which appear to be indications of convection cells.

As Dr. Telfer told Universe Today via email:

“We first saw some features looked kind of dune-like within the first few days, but as time passed, and new images came in, most of these seemed less and less convincing. But one area became more and more convincing with every pass. This is what we’re reporting on.”

Another interesting feature is the dark streams that are a few kilometers long and are all aligned in the same direction. But equally interesting were the features that Telfer and his team noticed, which looked like dunes that ran perpendicular to the wind streaks. This indicated that they were transverse dunes, the kinds that pile up due to prolonged wind activity in the desert.

New Horizon images showing the patterns on Pluto’s surface that were hypothesized to be dunes. Credit: NASA/JPL/University of Arizona

To determine if this was a plausible hypothesis, the researchers constructed models that took into account what kind of particles would make up these dunes. They concluded that either methane or nitrogen ice would be able to form sand-sized grains that could be transported by typical winds. They then modeled the physics of Pluto’s winds, which would be strongest coming down the slopes of the mountains that border Sputnik Planum.

However, they also determined that Pluto’s winds would not be strong enough to push the particles around on their own. This is where sublimation played a key role, where surface ice goes from a solid phase directly to a gas when warmed by sunlight. This sublimation would provide the upward force necessary to lift the particles, at which point they would be caught by Pluto’s winds and blown around.

As Dr. Telfer explained, this conclusion was made possible thanks to the immense amount of support his team got, much of which came from the New Horizons Geology, Geophysics and Imaging Science Theme Team:

“Once we’d done the spatial analysis that made us really sure that these features made sense as dunes, we had the great opportunity to hook up with Eric Parteli at Cologne; he showed us through his modelling that the dunes should form, as long as the grains become airborne in the first place. The NASA New Horizons team really helped here, as they pointed out that mixed nitrogen/methane ices would preferentially fling methane ice grains upwards as the ices sublimated.”

Comparison of dune features on Pluto with those on Earth and Mars. Credit: NASA/JPL/University of Arizona

In addition to showing that Pluto, one of the most distant objects in the Solar System, has a few things in common with Earth, this study has also shown just how active Pluto’s surface is. “It shows us that not only is Pluto’s surface affecting its atmosphere, the converse is also true,” said Dr. Telfer. “We have a really dynamic world’s surface, so far out in the solar system.

On top of that, understanding how dunes can form under Pluto’s conditions will help scientists to interpret similar features found elsewhere in the Solar System. For example, NASA is planning on sending a mission to Titan in the coming decade to study its many interesting surface features, which include its dune formations. And many more missions are being sent to explore the Red Planet before a crewed mission takes place in the 2030s.

Knowing how such formations were created are key to understanding the dynamics of the planet, which will help answer some of the deeper questions about what is taking place on the surface.

Further Reading: ArsTechnica, Science

Pluto is What You Get When a Billion Comets Smash Together

Pluto has been the focus of a lot of attention for more than a decade now. This began shortly after the discovery of Eris in the Kuiper Belt, one of many Kuiper Belt Objects (KBOs) that led to the “Great Planetary Debate” and the 2006 IAU Resolution. Interest in Pluto also increased considerably thanks to the New Horizons mission, which conducted the first flyby of this “dwarf planet” in July of 2015.

The data this mission provided on Pluto is still proving to be a treasure trove for astronomers, allowing for new discoveries about Pluto’s surface, composition, atmosphere, and even formation. For instance, a new study produced by researchers from the Southwest Research Institute (and supported by NASA Rosetta funding) indicates that Pluto may have formed from a billion comets crashing together.

The study, titled “Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto“, recently appeared in the scientific journal Icarus. The study was authored by Dr. Christopher R. Glein – a researcher with the Southwest Research Institute’s Space Science and Engineering Division – and Dr. J. Hunter Waite Jr, an SwRI program director.

The first Kuiper Belt is home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPL

The origin of Pluto is something that astronomers have puzzled over for some time. An early hypothesis was that it was an escaped moon of Neptune that had been knocked out of orbit by Neptune’s current largest moon, Triton. However, this theory was disproven after dynamical studies showed that Pluto never approaches Neptune in its orbit. With the discovery of the Kuiper Belt in 1992, the true of origin of Pluto began to become clear.

Essentially, while Pluto is the largest object in the Kuiper Belt, it is similar in orbit and composition to the icy objects that surround it. On occasion, some of these objects are kicked out of the Kuiper Belt and become long-period comets in the Inner Solar System. To determine if Pluto formed from billions of KBOs, Dr. Glein and Dr. Waite Jr. examined data from the New Horizons mission on the nitrogen-rich ice in Sputnik Planitia.

This large glacier forms the left lobe of the bright Tombaugh Regio feature on Pluto’s surface (aka. Pluto’s “Heart”). They then compared this to data obtained by the NASA/ESA Rosetta mission, which studied the comet 67P/Churyumov–Gerasimenko (67P) between 2014 and 2016. As Dr. Glein explained:

“We’ve developed what we call ‘the giant comet’ cosmochemical model of Pluto formation. We found an intriguing consistency between the estimated amount of nitrogen inside the glacier and the amount that would be expected if Pluto was formed by the agglomeration of roughly a billion comets or other Kuiper Belt objects similar in chemical composition to 67P, the comet explored by Rosetta.”

New Horizon’s July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI

This research also comes up against a competing theory, known as the “solar model”. In this scenario, Pluto formed from the very cold ices that were part of the protoplanetary disk, and would therefore have a chemical composition that more closely matches that of the Sun. In order to determine which was more likely, scientists needed to understand not only how much nitrogen is present at Pluto now (in its atmosphere and glaciers), but how much could have leaked out into space over the course of eons.

They then needed to come up with an explanation for the current proportion of carbon monoxide to nitrogen. Ultimately, the low abundance of carbon monoxide at Pluto could only be explained by burial in surface ices or destruction from liquid water. In the end, Dr. Glein and Dr. Waite Jr.’s research suggests that Pluto’s initial chemical makeup, which was created by comets, was modified by liquid water, possibly in the form of a subsurface ocean.

“This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” said Dr. Glein. “Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”

While the research certainly offers an interesting explanation for how Pluto formed, the solar model still satisfies some criteria. In the end, more research will be needed before scientists can conclude how Pluto formed. And if data from the New Horizons or Rosetta missions should prove insufficient, perhaps another to New Frontiers mission to Pluto will solve the mystery!

Further Reading: SwRI, Icarus