Complex Organics Molecules are Bubbling up From Inside Enceladus

The Cassini orbiter revealed many fascinating things about the Saturn system before its mission ended in September of 2017. In addition to revealing much about Saturn’s rings and the surface and atmosphere of Titan (Saturn’s largest moon), it was also responsible for the discovery of water plumes coming from Enceladus‘ southern polar region. The discovery of these plumes triggered a widespread debate about the possible existence of life in the moon’s interior.

This was based in part on evidence that the plumes extended all the way to the moon’s core/mantle boundary and contained elements essential to life. Thanks to a new study led by researchers from of the University of Heidelberg, Germany, it has now been confirmed that the plumes contain complex organic molecules. This is the first time that complex organics have been detected on a body other than Earth, and bolsters the case for the moon supporting life.

The study, titled “Macromolecular organic compounds from the depths of Enceladus“, recently appeared in the journal Nature. The study was led by Frank Postberg and Nozair Khawaja of the Institute for Earth Sciences at the University of Heidelberg, and included members from the Leibniz Institute of Surface Modification (IOM), the Southwest Research Institute (SwRI), NASA’s Jet Propulsion Laboratory, and multiple universities.

The “tiger stripes” of Enceladus, as pictured by the Cassini space probe. Credit: NASA/JPL/ESA

The existence of a liquid water ocean in Enceladus’ interior has been the subject of scientific debate since 2005, when Cassini first observed plumes containing water vapor spewing from the moon’s south polar surface through cracks in the surface (nicknamed “Tiger Stripes”). According to measurements made by the Cassini-Huygens probe, these emissions are composed mostly of water vapor and contain molecular nitrogen, carbon dioxide, methane and other hydrocarbons.

The combined analysis of imaging, mass spectrometry, and magnetospheric data also indicated that the observed southern polar plumes emanate from pressurized subsurface chambers. This was confirmed by the Cassini mission in 2014 when the probe conducted gravity measurements that indicated the existence of a south polar subsurface ocean of liquid water with a thickness of around 10 km.

Shortly before the probe plunged into Saturn’s atmosphere, the probe also obtained data that indicated that the interior ocean has existed for some time. Thanks to previous readings that indicated the presence of hydrothermal activity in the interior and simulations that modeled the interior, scientists concluded that if the core were porous enough, this activity could have provided enough heat to maintain an interior ocean for billions of years.

However, all the previous studies of Cassini data were only able to identify simple organic compounds in the plume material, with molecular masses mostly below 50 atomic mass units. For the sake of their study, the team observed evidence of complex macromolecular organic material in the plumes’ icy grains that had masses above 200 atomic mass units.

Hydrothermal activity in Enceladus’ core and the rise of organic-rich bubbles. Credit and Copyright: ESA; F. Postberg et al (2018)

This constitutes the first-ever detection of complex organics on an extraterrestrial body. As Dr. Khawaja explained in a recent ESA press release:

“We found large molecular fragments that show structures typical for very complex organic molecules. These huge molecules contain a complex network often built from hundreds of atoms of carbon, hydrogen, oxygen and likely nitrogen that form ring-shaped and chain-like substructures.”

The molecules that were detected were the result of the ejected ice grains hitting the dust-analyzing instrument aboard Cassini at speeds of about 30,000 km/hour. However, the team believes that these were mere fragments of larger molecules contained beneath Enceladus’ icy surface. As they state in their study, the data suggests that there is a thin organic-rich film on top of the ocean.

These large molecules would be the result of by complex chemical processes, which could be those related to life. Alternately, they may be derived from primordial material similar to what has been found in some meteorites or (as the team suspects) that is generated by hydrothermal activity. As Dr. Postberg explained:

“In my opinion the fragments we found are of hydrothermal origin, having been processed inside the hydrothermally active core of Enceladus: in the high pressures and warm temperatures we expect there, it is possible that complex organic molecules can arise.”

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

As noted, recent simulations have shown the moon could be generating enough heat through hydrothermal activity for its interior ocean to have existed for billions of years. This study follows up on that scenario by showing how organic material could be injected into the ocean by hydrothermal vents. This is similar to what happens on Earth, a process that scientists believe may have played a vital role in the origins of life on our planet.

On Earth, organic substances are able to accumulate on the walls of rising air bubbles created by hydrothermal vents, which then rise to the surface and are dispersed by sea spray and the bubbles bursting. Scientists believe a similar process is happening on Enceladus, where bubbles of gas rising through the ocean could be bringing organic materiel up from the core-mantle boundary to the icy surface.

When these bubbles burst at the surface, it helps disperse some of the organics which then become part of the salty spray coming through the tiger cracks. This spray then freezes into icy particles as it reaches space, sending organic material and ice throughout the Saturn System, where it has now been detected. If this study is correct, then another fundamental ingredient for life is present in Enceladus’ interior, making the case for life there that much stronger.

This is just the latest in a long-line of discoveries made by Cassini, many of which point to the potential existence of life on or in some of Saturn’s moons. In addition to confirming the first organic molecules in an “ocean world” of our Solar System, Cassini also found compelling evidence of a rich probiotic environment and organic chemistry on Titan.

In the future, multiple missions are expected to return to these moons to gather more evidence of potential life, picking up where the venerable Cassini left off. So long Cassini, and thanks for blazing a trail!

Further Reading: ESA, Nature

There’s Sand on Titan, Where Does it Come From?

This true-color image of Titan, taken by the Cassini spacecraft, shows the moon's thick, hazy atmosphere. Image: By NASA - http://photojournal.jpl.nasa.gov/catalog/PIA14602, Public Domain, https://commons.wikimedia.org/w/index.php?curid=44822294

Even though the Cassini orbiter ended its mission on of September 15th, 2017, the data it gathered on Saturn and its largest moon, Titan, continues to astound and amaze. During the thirteen years that it spent orbiting Saturn and conducting flybys of its moons, the probe gathered a wealth of data on Titan’s atmosphere, surface, methane lakes, and rich organic environment that scientists continue to pore over.

For instance, there is the matter of the mysterious “sand dunes” on Titan, which appear to be organic in nature and whose structure and origins remain have remained a mystery. To address these mysteries, a team of scientists from John Hopkins University (JHU) and the research company Nanomechanics recently conducted a study of Titan’s dunes and concluded that they likely formed in Titan’s equatorial regions.

Their study, “Where does Titan Sand Come From: Insight from Mechanical Properties of Titan Sand Candidates“, recently appeared online and has been submitted to the Journal of Geophysical Research: Planets. The study was led by Xinting Yu, a graduate student with the Department of Earth and Planetary Sciences (EPS) at JHU, and included EPS Assistant Professors Sarah Horst (Yu’s advisor) Chao He, and Patricia McGuiggan, with support provided by Bryan Crawford of Nanomechanics Inc.

To break it down, Titan’s sand dunes were originally spotted by Cassini’s radar instruments in the Shangri-La region near the equator. The images the probe obtained showed long, linear dark streaks that looked like wind-swept dunes similar to those found on Earth. Since their discovery, scientists have theorized that they are comprised of grains of hydrocarbons that have settled on the surface from Titan’s atmosphere.

In the past, scientists have conjectured that they form in the northern regions around Titan’s methane lakes and are distributed to the equatorial region by the moon’s winds. But where these grains actually came from, and how they came to be distributed in these dune-like formations, has remained a mystery. However, as Yu explained to Universe Today via email, that is only part of what makes these dunes mysterious:

“First, nobody expected to see any sand dunes on Titan before the Cassini-Huygens mission, because global circulation models predicted the wind speeds on Titan are too weak to blow the materials to form dunes. However, through Cassini we saw vast linear dune fields that covers almost 30% of the equatorial regions of Titan!

“Second, we are not sure how Titan sands are formed.Dune materials on Titan are completely different from those on Earth. On Earth, dune materials are mainly silicate sand fragments weathered from silicate rocks. While on Titan, dune materials are complex organics formed by photochemistry in the atmosphere, falling to the ground. Studies show that the dune particles are pretty big (at least 100 microns), while the photochemistry formed organic particles are still pretty small near the surface (only around 1 micron). So we are not sure how the small organic particles are transformed into the big sand dune particles (you need a million small organic particles to form one single sand particle!)

“Third, we also don’t know where the organic particles in the atmosphere are processed to become bigger to form the dune particles. Some scientists think these particles can be processed everywhere to form the dune particles, while some other researchers believe their formation need to be involved with Titan’s liquids (methane and ethane), which are currently located only in the polar regions.”

Dunes on Titan seen in Cassini’s radar (top) that are similar to Namibian sand dunes on Earth. The features that appear to be clouds in the top picture are actually topographic features. Credit: NASA

To shed light on this, Yu and her colleagues conducted a series of experiments to simulate materials being transported on both terrestrial and icy bodies. This consisted of using several natural Earth sands, such as silicate beach sand, carbonate sand and white gyspum sand. To simulate the kinds materials found on Titan, they used laboratory-produced tholins, which are molecules of methane that have been subjected to UV radiation.

The production of tholins was specifically conducted to recreate the kinds of organic aerosols and photochemistry conditions that are common on Titan. This was done using the Planetary HAZE Research (PHAZER) experimental system at Johns Hopkins University – for which the Principal Investigator is Sarah Horst. The last step consisted of using a nanoidentification technique (overseen by Bryan Crawford of Nanometrics Inc.) to study the mechanical properties of the simulated sands and tholins.

This consisted of placing the sand simulants and tholins into a wind tunnel to determine their mobility and see if they could be distributed in the same patterns. As Yu explained:

“The motivation behind the study is to try to answer the third mystery. If the dune materials are processed through liquids, which are located in the polar regions of Titan, they need to be strong enough to be transported from the poles to the equatorial regions of Titan, where most of the dunes are located. However, the tholins we produced in the lab are in extremely low amounts: the thickness of the tholin film we produced is only around 1 micron, about 1/10-1/100 of the thickness of human hair. To deal with this, we used a very intriguing and precise nanoscale technique called nanoindentation to perform the measurements. Even though the produced indents and cracks are all in nanometer scales, we can still precisely determine mechanical properties like Young’s modulus (indicator of stiffness), nanoindentation hardness (hardness), and fracture toughness (indicator of brittleness) of the thin film.”

Radar image of sand dunes on Titan. Credit: NASA/JPL–Caltech/ASI/ESA and USGS/ESA

In the end, the team determined that the organic molecules found on Titan are much softer and more brittle when compared to even the softest sands on Earth. Simply put, the tholins they produced did not appear to have the strength to travel the immense distance that lies between Titan’s northern methane lakes and the equatorial region. From this, they concluded that the organic sands on Titan are likely formed near where they are located.

“And their formation may not involve liquids on Titan, since that would require a huge transportation distance of over 2000 kilometers from the Titan’s poles to the equator,” Yu added. “The soft and brittle organic particles would be grinded to dust before they reach the equator. Our study used a completely different method and reinforced some of results inferred from Cassini observations.”

In the end, this study represents a new direction for researchers when it comes to the study of Titan and other bodies in the Solar System. As Yu explained, in the past, researchers were mostly constrained with Cassini data and modelling to answer questions about Titan’s sand dunes. However, Yu and her colleagues were able to use laboratory-produced analogs to address these questions, despite the fact that the Cassini mission is now at an end.

What’s more, this most recent study is sure to be of immense value as scientists continue to pore over Cassini’s data in anticipation of future missions to Titan. These missions aim to study Titan’s sand dunes, methane lakes and rich organic chemistry in more detail. As Yu explained:

“[O]ur results can not only help understand the origin of Titan’s dunes and sands, but also it will provide crucial information for potential future landing missions on Titan, such as Dragonfly (one of two finalists (out of twelve proposals) selected for further concept development by NASA’s New Frontiers program). The material properties of the organics on Titan can actually provide amazing clues to solve some of the mysteries on Titan.

“In a study we published last year in JGR-planets (2017, 122, 2610–2622), we found out that the interparticle forces between tholin particles are much larger than common sand on Earth, which means the organics on Titan are much more cohesive (or stickier) than silicate sands on Earth. This implies that we need a larger wind speed to blow the sand particles on Titan, which could help the modeling researchers to answer the first mystery. It also suggests that Titan sands could be formed by simple coagulation of organic particles in the atmosphere, since they are much easier to stick together. This could help understand the second mystery of Titan’s sand dunes.”

Artist’s concept of the dragonfly being deployed to Titan and commencing its exploration mission. Credit: APL/Michael Carroll

In addition, this study has implications for the study of bodies other than Titan. “We have found organics on many other solar system bodies, especially icy bodies in the outer solar system, such as Pluto, Neptune’s moon Triton, and comet 67P,” said Yu. “And some of the organics are photochemically produced similarly to Titan. And we do found wind blown features (called aeolian features) on those bodies as well, so our results could be applied to these planetary bodies as well.”

In the coming decade, multiple missions are expected to explore the moons of the outer Solar System and reveal things about their rich environments that could help shed light on the origins of life here on Earth. In addition, the James Webb Space Telescope (now expected to be deployed in 2021) will also use its advanced suit of instruments to study the planets of the Solar System in the hopes of address these burning questions.

Further Reading: arXiv

Ceres Has Even More Organic Molecules on it Than Previously Thought

In March of 2015, NASA’s Dawn mission became the first spacecraft to visit the protoplanet Ceres, the largest body in the Main Asteroid Belt. It was also the first spacecraft to visit a dwarf planet, having arrived a few months before the New Horizons mission made its historic flyby of Pluto. Since that time, Dawn has revealed much about Ceres, which in turn is helping scientists to understand the early history of the Solar System.

Last year, scientists with NASA’s Dawn mission made a startling discovery when they detected complex chains of carbon molecules – organic material essential for life – in patches on the surface of Ceres. And now, thanks to a new study conducted by a team of researchers from Brown University (with the support of NASA), it appears that these patches contain more organic material than previously thought.

The new findings were recently published in the scientific journal Geophysical Research Letters under the title “New Constraints on the Abundance and Composition of Organic Matter on Ceres“. The study was led by Hannah Kaplan, a postdoctoral researcher at Brown University, with the assistance of Ralph E. Milliken and Conel M. O’D. Alexander – an assistant professor at Brown University and a researcher from the Carnegie Institution of Washington, respectively.

A new analysis of Dawn mission data suggests those organics could be more plentiful than originally thought. Credit: NASA/Rendering by Hannah Kaplan

The organic materials in question are known as “aliphatics”, a type of compound where carbon atoms form open chains that are commonly bound with oxygen, nitrogen, sulfur and chlorine. To be fair, the presence of organic material on Ceres does not mean that the body supports life since such molecules can arise from non-biological processes.

Aliphatics have also been detected on other planets in the form of methane (on Mars and especially on Saturn’s largest moon, Titan). Nevertheless, such molecules remains an essential building block for life and their presence at Ceres raises the question of how they got there. As such, scientists are interested in how it and other life-essential elements (like water) has been distributed throughout the Solar System.

Since Ceres is abundant in both organic molecules and water, it raises some intriguing possibilities about the protoplanet. The results of this study and the methods they used could also provide a template for interpreting data for future missions. As Dr. Kaplan – who led the research while completing her PhD at Brown – explained in a recent Brown University press release:

“What this paper shows is that you can get really different results depending upon the type of organic material you  use to compare with and interpret the Ceres data. That’s important not only for Ceres, but also for missions that will soon explore asteroids that may also contain organic material.”

Enhanced color-composite image, made with data from the framing camera aboard NASA’s Dawn spacecraft, shows the area around Ernutet crater. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The original discovery of organics on Ceres took place in 2017 when an international team of scientists analyzed data from the Dawn mission’s Visible and Infrared Mapping Spectrometer (VIRMS). The data provided by this instrument indicated the presence of these hydrocarbons in a 1000 km² region around of the Ernutet crater, which is located in the northern hemisphere of Ceres and measures about 52 km (32 mi) in diameter.

To get an idea of how abundant the organic compounds were, the original research team compared the VIRMS data to spectra obtained in a laboratory from Earth rocks with traces of organic material. From this, they concluded that between 6 and 10% of the spectral signature detected on Ceres could be explained by organic matter.

They also hypothesized that the molecules were endogenous in origin, meaning that they originated from inside the protoplanet. This was consistent with previous surveys that showed signs of hydorthermal activity on Ceres, as well others that have detected ammonia-bearing hydrated minerals, water ice, carbonates, and salts – all of which suggested that Ceres had an interior environment that can support prebiotic chemistry.

But for the sake of their study, Kaplan and her colleagues re-examined the data using a different standard. Instead of relying on Earth rocks for comparison, they decided to examine an extraterrestrial source. In the past, some meteorites – such as carbonaceous chondrites – have been shown to contain organic material that is slightly different than what we are familiar with here on Earth.

Artist’s rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

After re-examining the spectral data using this standard, Kaplan and her team determined that the organics found on Ceres were distinct from their terrestrial counterparts. As Kaplan explained:

“What we find is that if we model the Ceres data using extraterrestrial organics, which may be a more appropriate analog than those found on Earth, then we need a lot more organic matter on Ceres to explain the strength of the spectral absorption that we see there. We estimate that as much as 40 to 50 percent of the spectral signal we see on Ceres is explained by organics. That’s a huge difference compared to the six to 10 percent previously reported based on terrestrial organic compounds.”

If the concentrations of organic material are indeed that high, then it raises new questions about where it came from. Whereas the original discovery team claimed it was endogenous in origin, this new study suggests that it was likely delivered by an organic-rich comet or asteroid. On the one hand, the high concentrations on the surface of Ceres are more consistent with a comet impact.

This is due to the fact that comets are known to have significantly higher internal abundances of organics compared with primitive asteroids, similar to the 40% to 50% figure this study suggests for these locations on Ceres. However, much of those organics would have been destroyed due to the heat of the impact, which leaves the question of how they got there something of a mystery.

Dawn spacecraft data show a region around the Ernutet crater where organic concentrations have been discovered (labeled “a” through “f”). The color coding shows the strength of the organics absorption band, with warmer colors indicating the highest concentrations. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF/MPS/DLR/IDA

If they did arise endogenously, then there is the question of how such high concentrations emerged in the northern hemisphere. As Ralph Milliken explained:

“If the organics are made on Ceres, then you likely still need a mechanism to concentrate it in these specific locations or at least to preserve it in these spots. It’s not clear what that mechanism might be. Ceres is clearly a fascinating object, and understanding the story and origin of organics in these spots and elsewhere on Ceres will likely require future missions that can analyze or return samples.”

Given that the Main Asteroid Belt is composed of material left over from the formation of the Solar System, determining where these organics came from is expected to shed light on how organic molecules were distributed throughout the Solar System early in its history. In the meantime, the researchers hope that this study will inform upcoming sample missions to near-Earth asteroids (NEAs), which are also thought to host water-bearing minerals and organic compounds.

These include the Japanese spacecraft Hayabusa2, which is expected to arrive at the asteroid Ryugu in several weeks’ time, and NASA’s OSIRIS-REx mission – which is due to reach the asteroid Bennu in August. Dr. Kaplan is currently a science team member with the OSIRIS-REx mission and hopes that the Dawn study she led will help the OSIRIS-REx‘s mission characterize Bennu’s environment.

“I think the work that went into this study, which included new laboratory measurements of important components of primitive meteorites, can provide a framework of how to better interpret data of asteroids and make links between spacecraft observations and samples in our meteorite collection,” she said. “As a new member to the OSIRIS-REx team, I’m particularly interested in how this might apply to our mission.”

The New Horizons mission is also expected to rendezvous with the Kuiper Belt Object (KBO) 2014 MU69 on January 1st, 2019. Between these and other studies of “ancient objects” in our Solar System – not to mention interstellar asteroids that are being detected for the first time – the history of the Solar System (and the emergence of life itself) is slowly becoming more clear.

Further Reading: Brown University, Geophysical Research Letters

Forecast for Titan: Cold, with a Chance of Noxious Ice Clouds

During the 13 years and 76 days that the Cassini mission spent around Saturn, the orbiter and its lander (the Huygens probe) revealed a great deal about Saturn and its systems of moons. This is especially true of Titan, Saturn’s largest moon and one of the most mysterious objects in the Solar System. As a result of Cassini’s many flybys, scientists learned a great deal about Titan’s methane lakes, nitrogen-rich atmosphere, and surface features.

Even though Cassini plunged into Saturn’s atmosphere on September 15th, 2017, scientists are still pouring over the things it revealed. For instance, before it ended its mission, Cassini captured an image of a strange cloud floating high above Titan’s south pole, one which is composed of toxic, hybrid ice particles. This discovery is another indication of the complex organic chemistry occurring in Titan’s atmosphere and on it’s surface.

Since this cloud was invisible to the naked eye, it was only observable thanks to Cassini’s Composite Infrared Spectrometer (CIRS). This instrument spotted the cloud at an altitude of about 160 to 210 km (100 to 130 mi), far above the methane rain clouds of Titan’s troposphere. It also covered a large area near the south pole, between 75° and 85° south latitude.

Artist concept of Cassini’s last moments at Saturn. Credit: NASA/JPL.

Using the chemical fingerprint obtained by the CIRS instrument, NASA researchers also conducted laboratory experiments to reconstruct the chemical composition of the cloud. These experiments determined that the cloud was composed of the organic molecules hydrogen cyanide and benzene. These two chemicals appeared to have condensed together to form ice particles, rather than being layered on top of each other.

For those who have spent more than the past decade studying Titan’s atmosphere, this was a rather interesting and unexpected find. As Carrie Anderson, a CIRS co-investigator at NASA’s Goddard Space Flight Center, said in a recent NASA press statement:

“This cloud represents a new chemical formula of ice in Titan’s atmosphere. What’s interesting is that this noxious ice is made of two molecules that condensed together out of a rich mixture of gases at the south pole.”

The presence of this cloud around Titan’s southern pole is also another example of the moon’s global circulation patterns. This involves currents of warm gases being sent from the hemisphere that is experiencing summer to the hemisphere experience winter. This pattern reverse direction when the seasons change, which leads to a buildup of clouds around whichever pole is experiencing winter.

Artist’s impression of Saturn’s moon Titan shows the change in observed atmospheric effects before, during and after equinox in 2009. Credit: NASA

When the Cassini orbiter arrived at Saturn in 20o4, Titan’s northern hemisphere was experiencing winter – which began in 2004. This was evidenced by the buildup of clouds around its north pole, which Cassini spotted during its first encounter with the moon later than same year. Similarly, the same phenomena was taking place around the south pole near the end of Cassini’s mission.

This was consistent with seasonal changes on Titan, which take place roughly every seven Earth years – a year on Titan lasts about 29.5 Earth years. Typically, the clouds that form in Titan’s atmosphere are structured in layers, where different types of gas will condense into icy clouds at different altitudes. Which ones condense is dependent on how much vapor is present and temperatures – which become steadily colder closer to the surface.

However, at times, different types of clouds can form over a range of altitudes, or co-condense with other types of clouds. This certainly appeared to be the case when it came to the large cloud of hydrogen cyanide and benzene that was spotted above the south pole. Evidence of this cloud was derived from three sets of Titan observations made with the CIRS instrument, which took place between July and November of 2015.

The CIRS instrument works by separating infrared light into its constituent colors, and then measures the strengths of these signals at the different wavelengths to determine the presence of chemical signatures. Previously, it was used to identify the presence of hydrogen cyanide ice clouds over the south pole, as well as other toxic chemicals in the moon’s stratosphere.

Artist’s impression of the Cassini orbiter’s Composite Infrared Spectrometer (CIRS). Credit: NASA-JPL

As F. Michael Flasar, the CIRS principal investigator at Goddard, said:

“CIRS acts as a remote-sensing thermometer and as a chemical probe, picking out the heat radiation emitted by individual gases in an atmosphere. And the instrument does it all remotely, while passing by a planet or moon.”

However, when examining the observation data for chemical “fingerprints”, Anderson and her colleagues noticed that the spectral signatures of the icy cloud did not match those of any individual chemical. To address this, the team began conducting laboratory experiments where mixtures of gases were condensed in a chamber that simulated conditions in Titan’s stratosphere.

After testing different pairs of chemicals, they finally found one which matched the infrared signature observed by CIRS. At first, they tried letting one gas condense before the other, but found that the best results were obtained when both gases were introduced and allowed to condense at the same time. To be fair, this was not the first time that Anderson and her colleagues had discovered co-condensed ice in CIRS data.

For example, similar observations were made near the north pole in 2005, about two years after the northern hemisphere experienced its winter solstice. At that time, the icy clouds were detected at a much lower altitude (below 150 km, or 93 mi) and showed chemical fingerprints of hydrogen cyanicide and caynoacetylene – one of the more complex organic molecules in Titan’s atmosphere.

Artist’s impression of the Cassini orbiter entering Saturn’s atmosphere. Credit: NASA/JPL

This difference between this and the latest detection of a hybrid cloud, according to Anderson, comes down to differences in seasonal variations between the north and south poles. Whereas the northern polar cloud observed in 2005 was spotted about two years after the northern winter solstice, the southern cloud Anderson and her team recently examined was spotted two years before the southern winter solstice.

In short, it is possible that the mixture of the gases was slightly different in the two case, and/or that the northern cloud had a chance to warm slightly, thus altering its composition somewhat.  As Anderson explained, these observations were made possible thanks to the many years that the Cassini mission spent around Saturn:

“One of the advantages of Cassini was that we were able to flyby Titan again and again over the course of the thirteen-year mission to see changes over time. This is a big part of the value of a long-term mission.”

Additional studies will certainly be needed to determine the structure of these icy clouds of mixed composition, and Anderson and her team already have some ideas on how they would look. For their money, the researchers expect these clouds to be lumpy and disorderly, rather than well-defined crystals like the single-chemical clouds.

In the coming years, NASA scientists are sure to be spending a great deal of time and energy sorting through all the data obtained by the Cassini mission over the course of its 13-year mission. Who knows what else they will detect before they have exhausted the orbiter’s vast collections of data?

Future Reading: NASA

Dragonfly Proposed to NASA as Daring New Frontiers Mission to Titan

In late 1970s and early 80s, scientists got their first detailed look at Saturn’s largest moon Titan. Thanks to the Pioneer 11 probe, which was then followed by the Voyager 1 and 2 missions, the people of Earth were treated to images and readings of this mysterious moon. What these revealed was a cold satellite that nevertheless had a dense, nitrogen-rich atmosphere.

Thanks to the Cassini-Huygens mission, which reached Titan in July of 2004 and will be ending its mission on September 15th, the mysteries of this moon have only deepened. Hence why NASA hopes to send more missions there in the near future, like the Dragonfly concept. This craft is the work of the John Hopkins University Applied Physics Laboratory (JHUAPL), which they just submitted an official proposal for.

Essentially, Dragonfly would be a New Frontiers-class mission that would use a dual-quadcopter setup to get around. This would enable vertical-takeoff and landing (VTOL), ensuring that the vehicle would be capable of exploring Titan’s atmosphere and conducting science on the surface. And of course, it would also investigate Titan’s methane lakes to see what kind of chemistry is taking place within them.

Image of Titan’s atmosphere, snapped by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

The goal of all this would be to shed light on Titan’s mysterious environment, which not only has a methane cycle similar to Earth’s own water cycle, but is rich in prebiotic and organic chemistry. In short, Titan is an “ocean world” of our Solar System – along with Jupiter’s moons Europa and Ganymede, and Saturn’s moon of Enceladus – that could contain all the ingredients necessary for life.

What’s more, previous studies have shown that the moon is covered in rich deposits of organic material that are undergoing chemical processes, ones that might be similar to those that took place on Earth billions of years ago. Because of this, scientists have come to view Titan as a sort of planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied.

As Elizabeth Turtle, a planetary scientist at JHUAPL and the principal investigator for the Dragonfly mission, told Universe Today via email:

“Titan offers abundant complex organics on the surface of a water-ice-dominated ocean world, making it an ideal destination to study prebiotic chemistry and to document the habitability of an extraterrestrial environment. Because Titan’s atmosphere obscures the surface at many wavelengths, we have limited information about the materials that make up the surface and how they’re processed.  By making detailed surface composition measurements in multiple locations, Dragonfly would reveal what the surface is made of and how far prebiotic chemistry has progressed in environments that provide known key ingredients for life, identifying the chemical building blocks available and processes at work to produce biologically relevant compounds.”

In addition, Dragonfly would also use remote-sensing observations to characterize the geology of landing sites. In addition to providing context for the samples, it would also allow for seismic studies to determine the structure of the Titan and the presence of subsurface activity. Last, but not least, Dragonfly would use meteorology sensors and remote-sensing instruments to gather information on the planet’s atmospheric and surface conditions.

The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR) is another concept for an aerial explorer for Titan. Credit: Mike Malaska

While multiple proposals have been made for a robotic explorer mission of Titan, most of these have taken the form of either an aerial platforms or a combination balloon and a lander. The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), a proposal made in the past by Jason Barnes and a team of researchers from the University of Idaho, is an example of the former.

In the latter category, you have concepts like the Titan Saturn System Mission (TSSM), a concept that was being jointly-developed by the European Space Agency (ESA) and NASA. An Outer Planets Flagship Mission concept, the design of the TSSM consisted of three elements – a NASA orbiter, an ESA-designed lander to explore Titan’s lakes, and an ESA-designed Montgolfiere balloon to explore its atmosphere.

What separates Dragonfly from these and other concepts is its ability to conduct aerial and ground-based studies with a single platform. As Dr. Turtle explained:

“Dragonfly would be an in situ mission to perform detailed measurements of Titan’s surface composition and conditions to understand the habitability of this unique organic-rich ocean world.  We proposed a rotorcraft to take advantage of Titan’s dense, calm atmosphere and low gravity (which make flight easier on Titan than it is on Earth) to convey a capable suite of instruments from place to place — 10s to 100s of kilometers apart — to make measurements in different geologic settings.  Unlike other aerial concepts that have been considered for Titan exploration (of which there have been several), Dragonfly would spend most of its time on the surface performing measurements, before flying to another site.”

Dragonfly‘s suite of instruments would include mass spectrometers to study the composition of the surface and atmosphere; gamma-ray spectrometers, which would measure the composition of the subsurface (i.e. looking for evidence of an interior ocean); meteorology and geophysics sensors, which would measure wind, atmospheric pressure, temperature and seismic activity; and a camera suite to snap pictures of the surface.

Artist’s concept of the Titan Aerial Daughter quadcopter and its “Mothership” balloon. Credit: NASA/STMD

Given Titan’s dense atmosphere, solar cells would not be an effective option for a robotic mission. As such, the Dragonfly would rely on a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for power, similar to what the Curiosity rover uses. While robotic missions that rely on nuclear power sources are not exactly cheap, they do enable missions that can last for years at a time and conduct invaluable research (as Curiosity has shown).

As Peter Bedini – the Program Manager at the JHUAPL Space Department and Dragonfly’s project manager – explained, this would allow for a long-term mission with significant returns:

“We could take a lander, put it on Titan, take these four measurements at one place, and significantly increase our understanding of Titan and similar moons. However, we can multiply the value of the mission if we add aerial mobility, which would enable us to access a variety of geologic settings, maximizing the science return and lowering mission risk by going over or around obstacles.”

In the end, a mission like Dragonfly would be able to investigate how far prebiotic chemistry has progressed on Titan. These types of experiments, where organic building blocks are combined and exposed to energy to see if life emerges, cannot be performed in a laboratory (mainly because of the timescales involved). As such, scientists hope to see how far things have progressed on Titan’s surface, where prebiotic conditions have existed for eons.

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural-color view from the Cassini spacecraft. Cassini captured this image in 2012. Image Credit: NASA/JPL-Caltech/Space Science Institute
Titan’s thick, nitrogen and hydrocarbon-rich atmosphere lends the planet a cloudy, yellowsh-brown appearance. Credit: NASA/JPL-Caltech/Space Science Institute

In addition, scientists will also be looking for chemical signatures that indicate the presence of water and/or hydrocarbon-based life. In the past, it has been speculated that life could exist within Titan’s interior, and that exotic methanogenic lifeforms could even exist on its surface. Finding evidence of such life would challenge our notions of where life can emerge, and greatly enhance the search for life within the Solar System and beyond.

As Dr. Turtle indicated, mission selection will be coming soon, and whether or not the Dragonfly mission will be sent to Titan should be decided in just a few years time:

“Later this fall, NASA will select a few of the proposed New Frontiers missions for further work in Phase A Concept Studies” she said. “Those studies would run for most of 2018, followed by another round of review.  And the final selection of a flight mission would be in mid-2019… Missions proposed to this round of the New Frontiers Program would be scheduled to launch before the end of 2025.”

And be sure to check out this video of a possible Dragonfly mission, courtesy of the JHUAPL:

Further Reading: JHU Hub

Cassini Finds that Titan is Building the Chemicals that Might Have Led to Life on Earth

Titan, Saturn’s largest moon, has been a source of mystery ever since scientists began studying it over a century ago. These mysteries have only deepened with the arrival of the Cassini-Huygens mission in the system back in 2004. In addition to finding evidence of a methane cycle, prebiotic conditions and organic chemistry, the Cassini-Huygens mission has also discovered that Titan may have the ingredient that help give rise to life.

Such is the argument made in a recent study by an international team of scientists. After examining data obtained by the Cassini space probe, they identified a negatively charged species of molecule in Titan’s atmosphere. Known as “carbon chain anions”, these molecules are thought to be building blocks for more complex molecules, which could played a key role in the emergence of life of Earth.

The study, titled “Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere“, recently appeared in The Astrophysical Journal Letters. The team included researchers from University College in London, the University of Grenoble, Uppsalla University, UCL/Birkbeck, the University of Colorado, the Swedish Institute of Space Physics, the Southwest Research Institute (SwRI), and NASA’s Goddard Space Flight Center.

Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong

As they indicate in their study, these molecules were detected by the Cassini Plasma Spectrometer (CAPS) as the probe flew through Titan’s upper atmosphere at an distance of 950 – 1300 km (590  – 808 mi) from the surface. They also show how the presence of these molecules was rather unexpected, and represent a considerable challenge to current theories about how Titan’s atmosphere works.

For some time, scientists have understood that within Titan’s ionosphere, nitrogen, carbon and hydrogen are subjected to sunlight and energetic particles from Saturn’s magnetosphere. This exposure drives a process where these elements are transformed into more complex prebiotic compounds, which then drift down towards the lower atmosphere and form a thick haze of organic aerosols that are thought to eventually reach the surface.

This has been the subject of much interest, since the process through which simple molecules form complex organic ones has remained something of a mystery to scientists. This could be coming to an end thanks to the detection of carbon chain anions, though their discovery was altogether unexpected. Since these molecules are highly reactive, they are not expected to last long in Titan’s atmosphere before combining with other materials.

However, the data showed that the carbon chains became depleted closer to the moon, while precursors to larger aerosol molecules underwent rapid growth. This suggests that there is a close relationship between the two, with the chains ‘seeding’ the larger molecules. Already, scientists have held that these molecules were an important part of the process that allowed for life to form on Earth, billions of years ago.

A halo of light surrounds Saturn’s moon Titan in this backlit picture, showing its atmosphere. Credit: NASA/JPL/Space Science Institute

However, their discovery on Titan could be an indication of how life begins to emerge throughout the Universe. As Dr. Ravi Desai, University College London and the lead author of the study, explained in an ESA press release:

“We have made the first unambiguous identification of carbon chain anions in a planet-like atmosphere, which we believe are a vital stepping-stone in the production line of growing bigger, and more complex organic molecules, such as the moon’s large haze particles. This is a known process in the interstellar medium, but now we’ve seen it in a completely different environment, meaning it could represent a universal process for producing complex organic molecules.”

Because of its dense nitrogen and methane atmosphere and the presence of some of the most complex chemistry in the Solar System, Titan is thought by many to be similar to Earth’s early atmosphere. Billions of years ago, before the emergence of microorganisms that allowed for subsequent build-up of oxygen, it is likely that Earth had a thick atmosphere composed of nitrogen, carbon dioxide and inert gases.

Therefore, Titan is often viewed as a sort planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied. However, the prospect of finding a universal pathway towards the ingredients for life has implications that go far beyond Earth. In fact, astronomers could start looking for these same molecules on exoplanets, in an attempt to determine which could give rise to life.

This illustration shows Cassini above Saturn’s northern hemisphere prior to one of its 22 Grand Finale dives. Credit: NASA/JPL-Caltech

Closer to home, the findings could also be significant in the search for life in our own Solar System. “The question is, could it also be happening within other nitrogen-methane atmospheres like at Pluto or Triton, or at exoplanets with similar properties?” asked Desia. And Nicolas Altobelli, the Project Scientist for the Cassini-Huygens mission, added:

These inspiring results from Cassini show the importance of tracing the journey from small to large chemical species in order to understand how complex organic molecules are produced in an early Earth-like atmosphere. While we haven’t detected life itself, finding complex organics not just at Titan, but also in comets and throughout the interstellar medium, we are certainly coming close to finding its precursors.

Cassini’s “Grande Finale“, the culmination of its 13-year mission around Saturn and its system of moons, is set to end on September 15th, 2017. In fact, as of the penning of this article, the mission will end in about 1 month, 18 days, 16 hours, and 10 minutes. After making its final pass between Saturn’s rings, the probe will be de-orbited into Saturn’s atmosphere to prevent contamination of the system’s moons.

However, future missions like the James Webb Space Telescope, the ESA’s PLATO mission and ground-based telescopes like ALMA are expected to make some significant exoplanet finds in the coming years. Knowing specifically what kinds of molecules are intrinsic in converting common elements into organic molecules will certainly help narrow down the search for habitable (or even inhabited) planets!

Further Reading: ESA, The Astrophysical Journal Letters

Ceres Provides First Detection Of Life’s Building Blocks In Asteroid Belt

NASA’s Dawn spacecraft has been poking around Ceres since it first established orbit in March of 2015. In that time, the mission has sent back a steam of images of the minor planet, and with a level of resolution that was previously impossible. Because of this, a lot of interesting revelations have been made about Ceres’ composition and surface features (like its many “bright spots“).

In what is sure to be the most surprising find yet, the Dawn spacecraft has revealed that Ceres may actually possess the ingredients for life. Using data from the Dawn spacecraft’s Visible and InfraRed Mapping Spectrometer (VIMS), an international team of scientists has confirmed the existence of organic molecules on Ceres – a find which could indicate that it has conditions favorable to life.

These findings – which were detailed in a study titled Localized aliphatic organic material on the surface of Ceres” – appeared in the Feb. 17th, 2017, issue of Science. For the sake of their study, the international team of researchers – which was led by Maria Cristina de Sanctis from the National Institute of Astrophysics in Rome, Italy – showed how Dawn sensor data pointed towards the presence of aliphatic compounds on the surface.

Enhanced color-composite image from Dawn’s visible and infrared mapping spectrometer, showing the area around Ernutet Crater on Ceres. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

Aliphatics are a type of organic compound where carbon atoms form open chains that are commonly bound with oxygen, nitrogen, sulfur and chlorine. The least complex aliphatic is methane, which has been detected in many locations across the Solar System – including in the Martian atmosphere and in both liquid and gaseous form on Saturn’s moon Titan.

From their study, Dr. de Sanctis and her colleagues determined that spectral data obtained by the VIMS instrument corresponded to the presence of these hydrocarbons in a region outside of the Ernutet crater. This crater, which is located in the northern hemisphere of Ceres, measures about 52 km (32 mi) in diameter. The aliphatic compounds which were detected were localized in a roughly 1000 square kilometers region around it.

The team ruled out the possibility that these organic molecules were deposited from an external source – such as a comet or carbonaceous chondrite asteroid. While both have been shown to contain organic molecules in their interior in the past, the largest concentrations on Ceres were distributed discontinuously across the southwest floor and rim of the Ernutet crater and onto an older, highly degraded crater.

In addition, other organic-rich areas were spotted being are scattered to the northwest of the crater. As Dr.  Maria Cristina De Sanctis told Universe Today via email:

“The composition that we see on Ceres is similar to some meteorites that has organics and thus we searched for this material. We considered both endogenous and exogenous origin, but the last one seems less likely due to several reasons including the larger abundance observed on Ceres with respect the meteorites.”

Dawn spacecraft data, showing the organics absorption band (warmer colors indicate highest concentrations). Credit: NASA/JPL-Caltech/UCLA/ASI/INAF/MPS/DLR/IDA

Instead, they considered the possibility that they organic molecules were endogenous in origin. In the past, surveys have shown evidence of hydrothermal activity on Ceres, which included signs of surface renewal and fluid mobility. Combined with other surveys that have detected ammonia-bearing hydrated minerals, water ice, carbonates, and salts, this all points towards Ceres having an environment that can support prebiotic chemistry.

“The overall composition of Ceres can favor the pre-biotic chemistry,” said De Sanctis. “Ceres has water ice and minerals (carbonates and phyllosilicates) derived  from pervasive aqueous  alteration of rocks. It has also material that we think is formed in hydrothermal environments.  All these information indicate condition not hostel to biotic molecules.”

These findings are certainly significant in helping to determine if life could exist on Ceres – in a way that is similar to Europa and Enceladus, locked away beneath its icy mantle. But given that Ceres is believed to have originated 4.5 billion years ago (when the Solar System was still in the process of formation), this study is also significant in that it can shed light on the origin, evolution, and distribution of organic life in our the Solar System.

Other members of the research team include researchers from the department of Earth Planetary and Space Sciences at the University of California, the Department of Earth and Planetary Sciences at the University of Tennessee, the Department of Earth, Environmental, and Planetary Sciences at Brown University, the Southwest Research Institute (SwRI), the NASA Goddard Space Flight Center, and NASA’s Jet Propulsion Laboratory.

Further Reading: ScienceMag, SwRI

Bound for Bennu, OSIRIS-REx Begins Trailblazing Asteroid Sampling Sortie for Life’s Origins – Sunset Launch Gallery

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter.  Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly installed crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Bound for Bennu, NASA’s OSIRIS-REx robotic explorer began a trailblazing 7 year round trip sampling sortie on Sept. 8 in search of the origin of life with a spectacular sky show – thrilling spectators ringing the Florida Space Coast.

Hordes of space enthusiasts from all across the globe descended on the Kennedy Space Center and Cape Canaveral region for the chance of a lifetime to witness a once in a lifetime liftoff to the carbon rich asteroid – which could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft departed Earth with an on time engine ignition of a United Launch Alliance Atlas V rocket under crystal clear skies on Thursday, September 8 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station.

Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: Jillian Laudick
Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: Jillian Laudick

Everything went exactly according to plan for the daring mission bolding seeking to gather rocks and soil from Bennu – using an ingenious robotic arm named TAGSAM – and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

“We got everything just exactly perfect,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona, at the post launch briefing at the Kennedy Space Center. “We hit all our milestone within seconds of predicts.

The space rock measures about the size of a small mountain at about a third of a mile in diameter.

And the picture perfect near sunset launch rewarded photographers from near and far with a spectacular series of richly hued photo and video recordings.

So I’ve gathered here a variety of launch imagery from multiple vantage points shot by friends, colleagues and myself – for the enjoyment of readers of Universe Today and Beyond!

Liftoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Julian Leek
Liftoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

As you’ll see and hear the ULA Atlas V rocket integrated with OSIRIS-Rex on top thundered off the Cape’s pad 41 and shot skyward straight up along an equatorial path into Florida’s sun.

From every vantage point the rocket and its ever expanding vapor trail were visible for some 4 or 5 minutes or more. From my location on the roof of NASA’s Vehicle Assembly Building (VAB) the rocket finally arched over nearly straight above us and the sun produced a magnificent thin and nearly straight shadow of the vapor trail on the ground running out to the Atlantic Ocean towards Africa.

Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: John Kraus
Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: John Kraus

It was truly an unforgettable sight to behold. And folks at Playalinda Beach, the best public viewing spot just a few miles north of pad 40 had an uninhibited view of the rocket to the base of the pad – while they waded and swam in the oceans waters with waves crashing on shore as the Atlas rocket blasted to space.

OSIRIS-REx separated as planned from the Atlas V rockets liquid oxygen and liquid hydrogen fueled second stage rocket to fly free at 8:04 p.m. on Sept. 8 – 55 minutes after launch.

The pair of solar arrays deployed as planned to provide the probes life giving power.

The spacecraft was built by prime contractor Lockheed.

“The spacecraft is healthy and functioning properly,” Richard Kuhns, Lockheed Martin OSIRIS-REx program manager, told me in an interview at the post-launch briefing.

Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right,  NASA Planetary Science Director Jim Green is center, 5th from left. Credit: Ken Kremer/kenkremer.com
Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right, NASA Planetary Science Director Jim Green is center, 5th from left. Richard Kuhns, Lockheed Martin OSIRIS-REx program manager, 2nd from right. Credit: Ken Kremer/kenkremer.com

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final preparations for shipment to the launch pad.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

After a two year flight through space, including an Earth swing by for a gravity assisted speed boost in 2017, OSIRIS-REx will reach Bennu in Fall 2018 to begin about 2 years of study in orbit to determine the physical and chemical properties of the asteroid in extremely high resolution.

While orbiting Bennu starting in 2018 it will move in close to explore the asteroid for about two years with its suite of science instruments, scanning in visible and infrared light. After a thorough site selection, it will move carefully towards the surface and extend the 11 foot long TAGSAM robotic arm and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish over just 3 to 5 seconds.

Once a good sample collection is confirmed, the dish will then be placed inside the Earth return canister and be brought back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

Using the 11 foot long TAGSAM robotic arm that functions somewhat like a pogo stick, OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth on Sept 24, 2023. It has the capacity to scoop up to about 2 kg or more.

ULA Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL, in this remote camera view taken from inside the launch pad perimeter.  Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com

The two stage ULA Atlas V performed flawlessly and delivered OSIRIS-Rex into a hyperbolic trajectory away from Earth.

The 189 foot tall ULA Atlas V rocket launched in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.

The Atlas 411 vehicle includes a 4-meter diameter large Payload Fairing (PLF) and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10A.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solid delivers approximately 348,500 pounds of thrust.

The Centaur delivers 22, 230 lbf of thrust and burns liquid oxygen and liquid hydrogen.

The solid was jettisoned at 139 seconds after liftoff.

Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from LC-39 Gantry.  Credit: Jen Saxby
Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from LC-39 Gantry. Credit: Jen Saxby

This is ULA’s eighth launch in 2016 and the 111th successful launch since the company was formed in December 2006.

NASA’s OSIRIS-REx blasts off to asteroid Bennu on ULA Atlas V rocket prior on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL, as seen from the VAB roof.  Credit: Lane Hermann/SpaceHeadNews
NASA’s OSIRIS-REx blasts off to asteroid Bennu on ULA Atlas V rocket prior on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL, as seen from the VAB roof. Credit: Lane Hermann/SpaceHeadNews

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

Watch these pair of up close videos (from myself and Jeff Seibert) captured directly at the pad with the sights and sounds of the fury of launch:

Video Caption: ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com

Video Caption: Compilation of my launch videos from the ULA Atlas 5 launch in support of the NASA OSIRIS_REx asteroid sample return mission to the asteroid Bennu (#101955). It was launched on September 8th, 2016 from Pad 41 of CCAFS. It is scheduled to land in UTAH with asteroid samples on September 24, 2023. Credit: Jeff Seibert

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from VAB roof.  Credit:  J.Sekora/SEKORAPHOTO
Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from VAB roof. Credit: J.Sekora/SEKORAPHOTO

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s OSIRIS-Rex asteroid sampling spacecraft streaks to orbit on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: Jillian Laudick
NASA’s OSIRIS-Rex asteroid sampling spacecraft streaks to orbit on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: Jillian Laudick
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-Rex Asteroid Mission Seeks to Search for Origin of Life Chemistry

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 41 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – OSIRIS-Rex, NASA’s first mission to retrieve and return samples of “pristine materials” from the surface of an asteroid and return them to Earth for high powered analysis by the world’s most advanced science instruments is encapsulated in the nose cone that’s bolted atop its Atlas rocket that has just been rolled out to its Earth departure launch pad.

It’s a groundbreaking mission that could inform us about astrobiology and yield significant clues to help determine the ‘Origin of Life’ on Earth.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8 at 7:05 p.m. EDT.

The United Launch Alliance Atlas V rocket and OSIRIS-REx spacecraft were moved about 1800 feet from the Vertical Integration Facility (VIF) – where the rocket is assembled- to launch pad 41 starting at about 9 a.m. this morning September 7, 2018.

Watch this Atlas V rocket roll video:

The ULA, NASA and science team conducted a launch readiness review yesterday and gave the GO for launch with all systems passing the stringent rocket and safety review. The even search for signs of any debris from last week’s SpaceX Falcon 9 explosion at the adjacent pad 40 located about a mile south. No signs of any debris or damage were found at pad 40 or the rocket and spacecraft.

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The weather forecast is currently 80% GO for favorable conditions. The only concern is for cumulus clouds.

There are 3 opportunities in a row to launch OSIRIS-Rex.

In case of a delay 24 or 48 hour delay, the forecast drops only slightly to 70% GO.

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center  is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-REx goal is to fly on a roundtrip seven-year journey of some 4.5 billion miles to the near-Earth asteroid target named Bennu and back.

Watch this mission video:

Video Caption: This video describes the seven-year journey of NASA’s OSIRIS-Rex mission from launch and cruising through space to asteroid Bennu and back. The probe will study Bennu, grab a 2 ounce or more sample from the surface and bring it back to Earth for lab study by researchers. Credit: Lockheed Martin/NASA

101955 Bennu is a near Earth asteroid discovered in 1999. It was selected specifically because it is a carbon-rich asteroid.

While orbiting Bennu starting in 2018 it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life ?

“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.

And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.
What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?

“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.

“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”

The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.

It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.

After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.

Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples with the TAGSAM sample return arm.

PI Lauretta will make the final decision on when and which site to grab the sample from.

“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”

“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”

“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”

“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”

The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

After a 7 year journey to asteroid Bennu and back, NASA’s OSIRIS-Rex sample return capsule  will land by parachute in the Utah desert on Sept. 24, 2023. Credits: NASA/Lockheed Martin
After a 7 year journey to asteroid Bennu and back, NASA’s OSIRIS-Rex sample return capsule will land by parachute in the Utah desert on Sept. 24, 2023. Credits: NASA/Lockheed Martin

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

The OSIRIS-REx spacecraft, enclosed in a payload fairing, is lifted Aug. 29, 2016 at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The United Launch Alliance Atlas V rocket that is to lift OSIRIS-REx into space was stacked at SLC-41 so the spacecraft and fairing could be hoisted up and bolted to the rocket. Photo credit: NASA/Dimitri Gerondidakis
The OSIRIS-REx spacecraft, enclosed in a payload fairing, is lifted Aug. 29, 2016 at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The United Launch Alliance Atlas V rocket that is to lift OSIRIS-REx into space was stacked at SLC-41 so the spacecraft and fairing could be hoisted up and bolted to the rocket. Photo credit: NASA/Dimitri Gerondidakis

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 7-9: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016.  Credit: Ken Kremer/kenkremer.com
Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

NASA’s OSIRIS-REx Asteroid Sampling Probe Assembled at Florida Launch Base for Sep. 8 Blastoff — Cleanroom Photos

NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center  is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – OSIRIS-Rex, the first American sponsored probe aimed at retrieving “pristine materials” from the surface of an asteroid and returning them to Earth has been fully assembled at its Florida launch base and is ready to blastoff ten days from today on Sep. 8. It’s a groundbreaking mission that could inform us about astrobiology and the ‘Origin of Life.’

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in an interview with Universe Today beside the completed spacecraft inside the Payloads Hazardous Servicing Facility, or PHSF, clean room processing facility at NASA’s Kennedy Space Center in Florida.

With virtually all prelaunch processing complete, leading members of the science, engineering and launch team including Lauretta met with several members of the media, including Universe Today, inside the clean room for a last and exclusive up-close look and briefing with the one-of-its-kind $800 million Asteroid sampling probe last week.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8 at 7:05 p.m. EDT.

OSIRIS-REx goal is to fly on a roundtrip seven-year journey to the near-Earth asteroid target named Bennu and back. 101955 Bennu is a near Earth asteroid and was selected specifically because it is a carbon-rich asteroid.

While orbiting Bennu it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

Overhead view of NASA’s OSIRIS-Rex asteroid sampling spacecraft with small white colored sample return canister atop,  inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL.   Credit:  Julian Leek
Overhead view of NASA’s OSIRIS-REx asteroid sampling spacecraft with small white colored sample return canister atop, inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.

I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life?

“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.

“And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.”

What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?

“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.

“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.

For the past three months it has undergone final integration, processing and testing inside the PHSF under extremely strict contamination control protocols to prevent contamination by particle, aerosols and most importantly organic residues like amino acids that could confuse researchers seeking to discover those very materials in the regolith samples gathered for return to Earth.

The PHFS clean room was most recently used to process the Orbital ATK Cygnus space station resupply vehicles. It has also processed NASA interplanetary probes such as the Curiosity Mars Science Laboratory and MAVEN Mars orbiter missions.

Side view of NASA’s OSIRIS-Rex asteroid sampling spacecraft showing the High Gain Antenna at left and solar panel, inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center.  Probe is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Side view of NASA’s OSIRIS-REx asteroid sampling spacecraft showing the High Gain Antenna at left and solar panel, inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Probe is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The spacecraft will reach Bennu in 2018. Once within three miles (5 km) of the asteroid, the spacecraft will begin at least six months of comprehensive surface mapping of the carbonaceous asteroid, according to Heather Enos, deputy principal investigator, in an interview with Universe Today.

“We will then move the spacecraft to within about a half kilometer or so to collect further data,” Enos elaborated.

It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.

After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.

Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples the TAGSAM sample return arm.

PI Lauretta will make the final decision on when and which site to grab the sample from.

“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”

“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”

“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”

“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”

The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.

NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL.   Credit: Lane Hermann
NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Lane Hermann

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.

Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu.  Credits: NASA/GSFC
Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu. Credits: NASA/GSFC

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

Watch this USLaunchReport video shot during media visit inside the PHSF on Aug. 20, 2016:

Video caption: Our first introduction to the OSIRIS-REx asteroid bound mission in search of the origins of life, from inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center on Aug. 20, 2016. Credit: USLaunchReport

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016.  Credit: Ken Kremer/kenkremer.com
Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com
The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft.  Credits: University of Arizona/Symeon Platts
The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft. Credits: University of Arizona/Symeon Platts