What’s Ahead for Recovered SpaceX Falcon 9 Booster?

Now that SpaceX has successfully and safely demonstrated the upright recovery of their Falcon 9 booster that flew to the edge of space and back on Dec. 21 – in a historic first – the intertwined questions of how did it fare and what lies ahead for the intact first stage stands front and center.

Well the booster is apparently no worse for the wear of the grueling ascent and descent and will live to fire up again one day in the not so distant future at a former shuttle launch pad at NASA’s Kennedy Space Center in Florida, following thorough inspections by SpaceX engineers. Continue reading “What’s Ahead for Recovered SpaceX Falcon 9 Booster?”

‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology

Elon Musk’s dream and ultimate goal of establishing a permanent human presence on the Red Planet in the form of “A City on Mars” took a gigantic step forward with the game changing rocket landing and recovery technology vividly demonstrated by his firm’s Falcon 9 booster this past Monday, Dec. 21 – following a successful blastoff from the Florida space coast just minutes earlier on the first SpaceX launch since a catastrophic mid-air calamity six months ago.

“I think this was a critical step along the way towards being able to establish a city on Mars,” said SpaceX billionaire founder and CEO Elon Musk at a media telecon shortly after Monday night’s (Dec. 21) launch and upright landing of the Falcon 9 rockets first stage on Cape Canaveral Air Force Station, Fla. Continue reading “‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology”

SpaceX Nails Perfect Return to Flight Launch and Historic Vertical Return Landing – Gallery

“There and back again,” said SpaceX CEO and founder Elon Musk after the amazing successful ‘Return to Flight’ launch of the firms Falcon 9 rocket and history making vertical return landing at Cape Canaveral, Fla, on Monday evening, Dec. 21.

For the first time in history, the first stage of a rocket blazing to orbit with a payload, separated successfully from the upper stage at high speed, turned around and then flew back to nail a successful rocket assisted upright touchdown back on the ground.

The upgraded “full thrust” SpaceX Falcon 9 blasted off Monday night, Dec. 21 at 8:29 p.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. carrying a constellation of ORBCOMM OG2 communications satellites to low Earth orbit.

“The Falcon Has Landed!” gushed exuberant SpaceX officials during a live webcast.

Read below what some excited eyewitnesses told Universe Today.

SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Leek Taylor

Accompanied by multiple shocking loud sonic booms, the 156 foot tall Falcon 9 first stage separated about 3 minutes into flight and landed successfully on the ground about 10 minutes later at the SpaceX Landing Zone 1 (LZ-1) complex at the Cape, some six miles south from pad 40.

The goal of SpaceX is to recover and eventually reuse the boosters in order to radically reduce the the cost of sending payloads and people to space, as often stated by SpaceX CEO Elon Musk.

My colleague and well known long time space photographer Julian Leek, remarked that the whole experience was fantastic!

“It was fantastic! You just would not believe the feeling,” space photographer Julian Leek told Universe Today. See his photos below.

“One of the best things I have seen since Apollo 11 liftoff!”

“It was one of the most spectacular space events I’ve seen,” said Jeff Seibert, another media photographer colleague.

“We felt like the rocket was coming down on top of us!”

Touchdown view of SpaceX Falcon 9 rocket at Landing Zone 1 at Cape Canaveral, Fla. on Dec. 21, 2015 as seen from atop Exploration Tower.  Credit: Jeff Seibert/AmericaSpace
Touchdown view of SpaceX Falcon 9 rocket at Landing Zone 1 at Cape Canaveral, Fla. on Dec. 21, 2015 as seen from atop Exploration Tower. Credit: Jeff Seibert/AmericaSpace

See the dramatic landing in this SpaceX video taken from a nearby helicopter:

“Honestly it will be something I’ll always remember!” astronomy enthusiast Carol Higgins of the Mohawk Valley Astronomical Society of Utica NY, told Universe Today.

“Seeing that thing falling so fast toward Earth, then the engine fire to slow it down, then watching it falling closer to the Cape – my heart was pounding so fast and hard I wasn’t sure what was going to happen to me LOL!”

This morning, Dec. 22, media reps were taken on a boat trip along the Cape’s Atlantic Ocean coastline past Landing Zone 1 for a birdseye view of the Falcon 9 standing upright.

Two cranes from Beyel Bros Crane and Rigging were seen hoisting and moving the Falcon 9 first stage from the vertical to horizontal position at ‘Landing Zone 1’ according to Steven M Beyel.

Post landing Ocean View of SpaceX Falcon 9 recovered first stage the day after touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Leek Taylor
Post landing Ocean View of SpaceX Falcon 9 recovered first stage the day after touchdown at Landing Zone 1 on Dec 21, 2015 being hoisted by Beyel Bros cranes. Credit: Dawn Leek Taylor

The primary mission of the Falcon 9 launch was to carry a fleet of eleven small ORBCOMM OG2 commercial communications satellites to orbit on the second of two OG2 launches. All 11 satellites were successfully deployed at an altitude of about 400 mi (620 km) above Earth.

The next generation ORBCOMM OG2 satellites provide Machine – to – Machine (M2M) messaging and Automatic Identification System (AIS) services with capabilities far beyond the OG1 series.

Here’s an expanding galley of photos and video for the Dec 21, 2015 launch and landing at Cape Canaveral.

So check back later for more!

SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Chuck Higgins
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Chuck Higgins
Up close post landing ocean view of landing legs at base of SpaceX Falcon 9 at Landing Zone 1 the day after stage touchdown at Landing Zone 1 on Dec 21, 2015 at Cape Canaveral, Fla.  Credit: Jeff Seibert/AmericaSpace
Up close post landing ocean view of landing legs at base of SpaceX Falcon 9 at Landing Zone 1 the day after stage touchdown at Landing Zone 1 on Dec 21, 2015 at Cape Canaveral, Fla. Credit: Jeff Seibert/AmericaSpace
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10  minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat.   Credit: Julian Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10 minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10  minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat.   Credit: Julian Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10 minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat. Credit: Julian Leek
Falcon 9 standing on LZ-1 at Cape Canaveral post landing on Dec. 21, 2015. Credit: SpaceX
Falcon 9 standing on LZ-1 at Cape Canaveral post landing on Dec. 21, 2015. Credit: SpaceX
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015.   First stage successfully landed vertically back at the Cape ten minutes later for the first time in history.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. First stage successfully landed vertically back at the Cape ten minutes later for the first time in history. Credit: Ken Kremer/kenkremer.com

Here’s the Dec 21 launch from my video camera placed at pad 40

“The Falcon Has Landed” – SpaceX Soft Lands Rocket after Launch in Historic Feat

“The Falcon Has Landed!” gushed exuberant SpaceX officials following tonight’s (Dec 21) history making upright ground landing of the firms spent Falcon 9 boost stage barely 10 minutes after if launched on a critical mission to deliver a constellation of commercial communications satellites to Earth orbit.

Breaking News: Check Back later for more. See more photos video in follow up story here

Following a spectacular nighttime blastoff from Cape Canaveral, Fla, SpaceX has just successfully recovered and soft landed the 156 foot tall first stage of their Falcon 9 rocket back on the ground at the Cape – in a monumental and historic space feat that will reverberate around the world. This is a game changing moment that will alter the future of space travel.

WATCH the SpaceX webcast as the first stage lands, at about 31 minutes in the video:

Local area spectators cheered the launch and clearly saw the landing. They said several powerful sonic booms could be heard thundering loudly across the space coast. It was one of the most amazing sights they had ever seen, many folks said.

The upgraded SpaceX Falcon 9 launched a fleet 11 ORBCOMM OG2 communications satellites to orbit on Monday, Dec. 21 at 8:29 p.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla.

The stunning liftoff and landing marked the Falcon 9 boosters ‘Return to Flight’ and is the first launch for SpaceX since the catastrophic mid-air destruction of the rocket six months ago on June 28, 2015 – after launching from the same pad as today – on a cargo mission for NASA bound for the International Space Station (ISS) and her six person crew.

The first stage landing, vertically at night, was apparently perfect and came off without a hitch by all accounts.

The Falcon 9 is equipped with four landing legs and four grid fins to enable the propulsive landing back on the ground at the Cape, once the first stage separates and relights a Merlin 1D engine.

About 3 minutes after liftoff and about 60 miles altitude, the spent first stage separated from the second stage which continued to orbit with the Orbcomm satellites.

While moving at extremely high speed of some 3000 mph, the rocket was then commanded to fire cold gas nitrogen attitude thrusters to reorient itself and to turn the vehicle around – its sort of like riding on a broomstick in a hurricane. It then conducted a boostback burn with a first stage Merlin 1D engine to create a reversed ballistic arc. Then it conducted a reentry burn and finally a landing burn above the ground at Landing Zone 1 at Cape Canaveral.

The quartet of side mounted landing legs were lowered into place in the final moments before touchdown.

Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX
Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX

The history making landing attempt of the boosters first stage took place back at the Cape at the SpaceX Landing Zone 1 site at about 8:39 p.m. EST after high altitude separation from the upper stage and around 10 minutes after launch.

The entire event from launch to landing was shown via a live SpaceX webcast.

The goal is to recover and eventually reuse the boosters in order to radically cut the cost of sending payloads and people to space, as often stated by SpaceX CEO Elon Musk.

But the key step to solve is you first have to recover the booster before you can even think about relaunching it. After its recovered it can then be thoroughly analyzed for the impact of aerodynamic stresses and the engine firings to determine the feasibility of refurbishment and reusability for relaunch.

Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX
Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX

Landing the Falcon 9 rockets first stage on land at SpaceX’s Landing Zone 1 (LZ-1) complex by a pinpoint propulsive soft landing was the secondary test objective. Landing Zone 1 is located some six miles south of launch pad 40 at Cape Canaveral.

Because of the proximity to populated areas, SpaceX required special approvals for the surface landing test from the Air Force and the FAA. And much of the military base and NASA installations have been evacuated for safety reasons. Media are also not allowed to watch and photograph from their customary locations on site at Cape Canaveral Air Force Station.

SpaceX has built Landing Zone 1 by renovating and refurbishing an abandoned area previously known as Space Launch Complex 13 (SLC-13).

Landing Zone 1 measures about 282 feet in diameter and is constructed of reinforced concrete. SpaceX has actually built several of the concrete landing pads for use as a landing site by the firms Falcon 9 as well as the triple barreled Falcon Heavy boosters which may debut in 2016.

Launch Complex 13 is a former U.S. Air Force rocket and missile testing range last used in 1978 for test launches of the Atlas ICBM and subsequently for operational Atlas launches.

View of SpaceX Falcon 9 first stage approaching Landing Zone 1 on Dec. 21, 2015. Credit: SpaceX
View of SpaceX Falcon 9 first stage approaching Landing Zone 1 on Dec. 21, 2015. Credit: SpaceX

The primary mission was to carry a payload of eleven small commercial communications satellites for Orbcomm on the second OG2 mission. They were fueled and stacked on the satellite dispenser and encapsulated inside the payload fairing.

All 11 of the refrigerator sized OG2 satellites were successfully deployed as planned at an altitude of about 400 mi (620 km). They joined the existing fleet of OG2 satellites.

The 380 pound (170 kg) satellites were deployed two at a time from the satellite dispenser during six separation events. The staggered deployment of the 170 kg comsats took place over about four minutes from 8:42 p.m. to 8 46 p.m. in order to place the constellation of spacecraft into the proper orbit.

All 11 Orbcomm OG2 satellites were deployed to nominal orbits.  Credit: SpaceX
All 11 Orbcomm OG2 satellites were deployed to nominal orbits. Credit: SpaceX

This was the second and last OG2 launch for OrbComm. SpaceX has already notched one successful launch for Orbcomm when the first six Orbcomm OG2 satellites lifted off on July 14, 2014.

The ORBCOMM OG2 satellites provide Machine – to – Machine (M2M) messaging and Automatic Identification System (AIS) services.

Overall it was a wildly successful ‘Return to Flight’ and a historic day for SpaceX.

SpaceX Falcon 9 rocket for Orbcomm OG2 launch slated for Dec. 20 stands vertical at pad 40 at Cape Canaveral, Fla.  Credit: SpaceX
SpaceX Falcon 9 rocket for Orbcomm OG2 launch before liftoff on Dec. 21, stands vertical at pad 40 at Cape Canaveral, Fla. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Aerial view of SpaceX landing Zone 1 Complex at Cape Canaveral Air Force Station, Florida
Aerial view of SpaceX landing Zone 1 Complex at Cape Canaveral Air Force Station, Florida

SpaceX Targets Dramatic Nighttime Falcon 9 Launch and Daring Cape Canaveral Landing on Dec. 21

A “significantly upgraded” SpaceX Falcon 9 rocket stands erect on the Florida space coast today, Sunday, Dec. 20, and is poised to make history Monday evening (Dec. 21) with a spectacular nighttime blast off and daring first ever surface landing attempt of the boosters first stage at Cape Canaveral Air Force Station, that could be accompanied by sonic booms – if all goes well.

Dec 20 Update: SpaceX CEO Elon Musk has just scrubbed for the day and reset launch to Monday, Dec. 21 and story is revised.

“Just reviewed mission params w SpaceX team. Monte Carlo runs show tmrw night has a 10% higher chance of a good landing. Punting 24 hrs,” Musk tweeted. Continue reading “SpaceX Targets Dramatic Nighttime Falcon 9 Launch and Daring Cape Canaveral Landing on Dec. 21”

SpaceX Sets Dec. 20 For ‘Return to Flight’ Launch and Historic Rocket Ground Landing Recovery Attempt – Watch Live

SpaceX CEO Elon Musk announced today (Dec. 19) that his company plans to launch an upgraded version of its Falcon 9 rocket on Sunday night, Dec. 20, from Cape Canaveral, Florida – for the first time since it failed in flight six months ago on a mission for NASA to the space station – after successfully completing a crucial test of the rockets engines late Friday night.

Furthermore, SpaceX confirmed it will conduct a historic first ever attempt to recover the commercial rocket’s first stage by a soft landing on the ground at a special SpaceX site called Landing Zone 1 on the Cape’s Air Force Station. Continue reading “SpaceX Sets Dec. 20 For ‘Return to Flight’ Launch and Historic Rocket Ground Landing Recovery Attempt – Watch Live”

SpaceX Sets Ambitious Falcon 9 ‘Return to Flight’ Agenda with Dual December Blastoffs

SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX ‘Return to Flight’ launch upcoming in December 2015 features 11 ORBCOMM satellites. SpaceX Falcon 9 rocket on Pad 40 at Cape Canaveral, FL, prior to launch on July 14, 2014 on prior ORBCOMM OG2 mission with six OG2 satellites. The USAF has certified the Falcon 9 to compete for US national security launches. Credit: Ken Kremer/kenkremer.com

SpaceX plans an ambitious ‘Return to Flight’ agenda with their Falcon 9 rocket comprising dual launches this coming December, nearly six months after their failed launch in June 2015 that culminated in the total mid-air loss of the rocket and NASA cargo bound for the crew aboard the International Space Station (ISS).

The double barreled salvo of Falcon 9 blastoffs both involve launches of commercial communications satellites – first for Orbcomm followed by SES – and are specifically devised to allow a gradually ramp up in complexity, as SpaceX introduces fixes for the launch failure and multiple improvements to the boosters overall design. Continue reading “SpaceX Sets Ambitious Falcon 9 ‘Return to Flight’ Agenda with Dual December Blastoffs”

SpaceX Launches Six Commercial Satellites on Falcon 9; Landing Test Ends in “Kaboom”

SpaceX successfully launched six ORBCOMM advanced telecommunications satellites into orbit on Monday, July 14, to significantly upgrade the speed and capacity of their existing data relay network. The launch from Cape Canaveral Air Force Station in Florida had been delayed or scrubbed several times since the original launch date in May due to varying problems from payload integration issues, weather conditions and issues with the Falcon 9 rocket. But the launch went off without a hitch today and ORBCOMM reports that all six satellites have been successfully deployed in orbit.

SpaceX also used this launch opportunity to try and test the reusability of the Falcon 9’s first stage and its landing system while splashing down in the ocean. However, the booster did not survive the splashdown. SpaceX CEO Elon Musk reported that the rocket booster reentry, landing burn and leg deployment worked well, the hull of the first stage “lost integrity right after splashdown (aka kaboom),” Musk tweeted. “Detailed review of rocket telemetry needed to tell if due to initial splashdown or subsequent tip over and body slam.”

SpaceX wanted to test the “flyback” ability to the rocket, slowing down the descent of the rocket with thrusters and deploying the landing legs for future launches so the first stage can be re-used. These tests have the booster “landing” in the ocean. The previous test of the landing system was successful, but the choppy seas destroyed the stage and prevented recovery. Today’s “kaboom” makes recovery of even pieces of this booster unlikely.

As far as the ORBCOMM satellites, the six satellites launched today are the first part of what the company hopes will be a 17-satellite constellation. They hope to have all 17 satellites in orbit by the end of the 2014.

SpaceX Set to Launch Oft Delayed Falcon 9 with Commercial ORBCOMM Satellites on June 20 – Watch Live

A SpaceX Falcon 9 rocket was rolled out to its Florida launch pad early this morning at 1 a.m., Friday, June 20, in anticipation of blastoff at 6:08 p.m. EDT this evening on an oft delayed commercial mission for ORBCOMM to carry six advanced OG2 communications satellites to significantly upgrade the speed and capacity of their existing data relay network, affording significantly faster and larger messaging services.

The Falcon 9 rocket is lofting six second-generation ORBCOMM OG2 commercial telecommunications satellites from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

Update (6/23): The Saturday launch was scrubbed due to 2nd stage pressure decrease and then was scrubbed on Saturday and Sunday due to weather and technical reasons. SpaceX must now delay the launch until the first week in July because of previously scheduled maintenance for the Eastern Test Range, which supports launches from Cape Canaveral Air Force Station. This also allows SpaceX to take “a closer look at a potential issue identified while conducting pre-flight checkouts during [Sunday’s] countdown,” the company said in statement on its website on June 23.

The next generation SpaceX Falcon 9 rocket is launching in its more powerful v1.1 configuration with upgraded Merlin 1D engines, stretched fuel tanks, and the satellites encapsulated inside the payload fairing.

SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Falcon 9 will deliver all six next-generation OG2 satellites to an elliptical 750 x 615 km low-Earth orbit. They will be deployed one at a time starting 15 minutes after liftoff.

The first stage is also equipped with a quartet of landing legs to conduct SpaceX’s second test of a controlled soft landing in the Atlantic Ocean in an attempt to recover and eventually use the stage as a means of radically driving down overall launch costs – a top goal of SpaceX’s billionaire CEO and founder Elon Musk.

The launch has been delayed multiple times from May due to technical problems with both the Falcon 9 rocket and the OG2 satellites.

The May launch attempt was postponed when a static hot-fire test was halted due to a helium leak and required engineers to fix the issues.

Last week on June 13, SpaceX conducted a successful static hot-fire test of the 1st stage Merlin engines (see photos above and below) which had paved the way for blastoff as soon as Sunday, June 15.

However ORBCOMM elected to delay the launch in order to conduct additional satellite testing to ensure they are functioning as expected, the company reported.

“In an effort to be as cautious as possible, it was decided to perform further analysis to verify that the issue observed on one satellite during final integration has been fully addressed. The additional time to complete this analysis required us to postpone the OG2 Mission 1 Launch,” said ORBCOMM.

You can watch the launch live this evening with real time commentary from SpaceX mission control located at their corporate headquarters in Hawthorne, CA.

Watch the SpaceX live webcast beginning at 5:35 pm EDT here: www.spacex.com/webcast.

An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp
An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp

The six new satellites will join the existing constellation of ORBCOMM OG1 satellites launched over 15 years ago.

The weather outlook is currently not promising with only a 30% chance of favorable conditions at launch time. The launch window extends for 53 minutes.

The primary concerns according to the USAF forecast are violations of the Cumulus Cloud Rule, Thick Cloud Rule, Lightning Rule, Anvil Cloud Rule.

In the event of a scrub, the backup launch window is Saturday June 21. The weather outlook improves to 60% ‘GO’.

SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL. Launch is slated for Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com

Fueling of the rocket’s stages begins approximately four hours before blastoff – shortly after 2 p.m. EDT. First with liquid oxygen and then with RP-1 kerosene propellant.

Each of the 170 kg OG2 satellites was built by Sierra Nevada Corporation and will provide a much needed boost in ORBCOMM’s service capacity.

The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle.  Credit: SpaceX
The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle. Credit: SpaceX
10 more OG2 satellites are scheduled to launch on another SpaceX Falcon 9 in the fourth quarter of 2014 to complete ORBCOMM’s next generation constellation.

“ORBCOMM’s OG2 satellites will offer up to six times the data access and up to twice the transmission rate of ORBCOMM’s existing OG1 constellation,” according to the SpaceX press kit.

“Each OG2 satellite is the equivalent of six OG1 satellites, providing faster message delivery, larger message sizes and better coverage at higher latitudes, while drastically increasing network capacity. Additionally, the higher gain will allow for smaller antennas on communicators and reduced power requirements, yielding longer battery lives.”

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer