Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December

Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled Ultraflex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida.    Credit: Orbital ATK
Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled UltraFlex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida. Credit: Orbital ATK
See OA-4 mission patch and hardware photos below

The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”

“We are very excited about the upcoming [OA-4] cargo mission and returning to flight,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, in an exclusive interview with Universe Today. Continue reading “Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December”

Orbital ATK on the Rebound With Antares Return to Flight in 2016

Orbital ATK is on the rebound with return to flight of their Antares rocket slated in early 2016 following the catastrophic launch failure that doomed the last Antares in October 2014 on a resupply mission for NASA to the International Space Station (ISS).

Engineers are making “excellent progress” assembling a modified version of Antares that is currently on track to blast off as soon as March 2016 with the company’s Cygnus resupply ship and resume critical deliveries of research experiments and life sustaining provisions to the multinational crews serving aboard the orbiting outpost.

“We are on track for the next Antares launch in early 2016,” said David Thompson, President and Chief Executive Officer of Orbital ATK in a progress update.

Resuming Antares launches is a key part of the company’s multipronged effort to fulfil their delivery commitments to NASA under the Commercial Resupply Services (CRS) contract.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA,” Thompson stated.

“After the Antares launch failure last October … our team has been sharply focused on fulfilling that commitment.”

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA's Wallops Flight Facility launch pad on Oct 26 - 2 days before the ??Orb-3? launch failure on Oct 28, 2014.  Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer – kenkremer.com

The key milestone was to successfully re-engine Antares with a new type of first stage engine that completely eliminates use of the original AJ26 engines that were refurbished 40 year leftovers – the NK-33 from Russia’s abandoned manned moon landing program.

After the launch failure, Orbital managers decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with the new RD-181 Russian-built engines that were derived from the RD-191.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware spread out over eight Cygnus cargo delivery flights to the ISS.

NASA has recently supplemented the CRS contract with three additional Cygnus resupply deliveries in 2017 and 2018.

However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.

Until Antares flights can safely resume, Orbital ATK has contracted with rocket maker United Launch Alliance (ULA) to launch a Cygnus cargo freighter atop an Atlas V rocket for the first time, in early December – as I reported here.

The Antares rocket is being upgraded with the new RD-181 main engines powering the modified first stage core structure that replace the troublesome AJ26 engines whose failure caused the Antares Orb-3 launch explosion on Oct. 28, 2014.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“We are making excellent progress in resuming our cargo delivery service to the International Space Station for NASA under the Commercial Resupply Services (CRS) contract,” said company officials.

Orbital ATK engineering teams have been working diligently on “integrating and testing the new RD-181 main engines.”

After engineers finished acceptance testing and certification of the RD-181, the first dual engine set was shipped to Orbital’s Wallops Island integration facility. They arrived in mid-July. A second set is due to arrive in the fall.

“The RD-181 engine provides extra thrust and higher specific impulse, significantly increasing the payload capacity of the Antares rocket. This state-of-the-art propulsion system is a direct adaptation of the RD-191 engine, which completed an extensive qualification and certification program in 2013, accumulating more than 37,000 seconds of total run time,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group, in a statement.

Engineers and technicians have now “integrated the two RD-181 engines with a newly designed and built thrust frame adapter and modified first stage airframe.”

Then they will add new propellant feed lines and first stage avionics systems.

Then comes the moment of truth. A “hot fire” test on the launch pad will be conducted by either the end of 2015 or early 2016 “to verify the vehicle’s operational performance and compatibility of the MARS launch complex.”

“Significant progress has been made in the manufacture and test of the modified hardware components, avionics and software needed to support the new engines,” said Mike Pinkston, Vice President and General Manager of Orbital ATK’s Antares Program.

“We are solidly on track to resume flying Antares in 2016.”

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Simultaneously, teams have been working hard to repair the Wallops launch pad which was damaged when the doomed Antares plummeted back to Earth and exploded in a hellish inferno witnessed by thousands of spectators and media including myself.

Repairs are expected to be completed by early 2016 to support a launch tentatively planned for as soon as March 2016.

SpaceX, NASA’s other commercial cargo company under contract to ship supplies to the ISS also suffered a launch failure of with their Falcon 9/Dragon cargo delivery rocket on June 28, 2015.

NASA is working with both forms to restart the critical ISS resupply train as soon as can safely be accomplished.

Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Aug 29-31: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Cygnus Freighter Arrives at Kennedy as Orbital ATK Ramps Up Station Resupply Recovery Efforts via Atlas V

A commercial Cygnus cargo freighter has just arrived at the Kennedy Space Center (KSC) in Florida to begin intensive processing for a critical mission to deliver some four tons of science experiments and supplies to the International Space Station (ISS) atop an Atlas V rocket in early December – as manufacturer Orbital ATK takes a big step in ramping up activities to fulfill its station resupply commitments and recover from the catastrophic launch failure of the firms Antares rocket last October.

Taking advantage of the built in flexibility to launch Cygnus on a variety of rockets, Orbital ATK quickly contracted rocket maker United Launch Alliance (ULA) to propel the cargo ship as soon as practical on the venerable Atlas V – as Orbital simultaneously endeavors to reengineer the Antares and bring that vehicle back to full flight status in 2016.

Since the fastest and most robust path back to on orbital cargo delivery runs through Florida via an Atlas V, Orbital ATK teamed up with ULA to launch a minimum of one Cygnus with an option for more.

Cygnus is comprised of a pressurized cargo module (PCM) manufactured by Thales Alenia Space’s production facility in Turin, Italy and a service module (SM) manufactured at Orbital ATK’s Dulles, Virginia satellite manufacturing facility.

The PCM arrived on Monday, Aug. 11 and is now being processed for the flight dubbed OA-4 at KSC inside the Space Station Processing Facility (SSPF). After the SM arrives in October it will be mated to the PCM inside the SSPF.

The OA-4 Service Module (SM) undergoing deployment testing of one of its two UltraflexTM solar arrays at orbital ATK’s Dulles, Virginia satellite manufacturing facility. Orbital ATK’s Space Components Division supplies the Ultraflex arrays.  Credit: Orbital ATK
The OA-4 Service Module (SM) undergoing deployment testing of one of its two UltraflexTM solar arrays at orbital ATK’s Dulles, Virginia satellite manufacturing facility. Orbital ATK’s Space Components Division supplies the Ultraflex arrays. Credit: Orbital ATK

The first Cygnus cargo mission should liftoff sometime late in the fourth quarter of 2015, perhaps as soon as Dec. 3, aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

Since ULA’s Atlas V manifest was already fully booked, ULA managers told me that they worked diligently to find a way to manufacture and insert an additional Atlas V into the tight launch sequence flow at the Cape.

And since the station and its six person crews can’t survive and conduct their scientific research work without a steady train of cargo delivery missions from the station’s partner nations, Orbital ATK is “devoting maximum efforts” to get their Antares/Cygnus ISS resupply architecture back on track as fast as possible.

Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for eight Cygnus cargo delivery flights to the ISS.

However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“We committed to NASA that we would resume CRS cargo delivery missions as soon as possible under a comprehensive ‘go-forward’ plan after the Antares launch failure last October,” said David W. Thompson, President and Chief Executive Officer of Orbital ATK.

“Since that time our team has been sharply focused on fulfilling that commitment. With a Cygnus mission slated for later this year and at least three missions to the Space Station planned in 2016, we are on track to meet our CRS cargo requirements for NASA.”

Orbital says they will deliver the full quantity of cargo specified in the CRS contract with NASA.

“Our team and our partners are devoting maximum efforts to ensuring the success of NASA’s ISS commercial cargo program.”

“We are committed to meeting all CRS mission requirements, and we are prepared to continue to supply the Space Station.”

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9, 2014 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

For the OA-4 cargo mission, Cygnus will be loaded with its heaviest cargo to date on nearly four tons.

The weightier cargo is possible because a longer version of Cygnus will be employed.

This mission will fly with the extended Cygnus Pressurized Cargo Module (PCM) which will carry approximately 3,500 kg or 7,700 pounds of supplies to station.

“This is a very exciting time for the Cygnus team at Orbital ATK,” said Frank DeMauro, vice president of Human Space Systems and program director of the Commercial Resupply Services program at Orbital ATK.

“Not only are we launching from Kennedy on an Atlas V for the first time, but this will also be the first flight of the Enhanced Cygnus, which includes a larger cargo module and a more mass-efficient service module.”

Use of the enhanced Cygnus in combination with the added thrust ULA V is a game changer enabling the Cygnus to carry its maximum possible cargo load for NASA.

“During our first three missions, we delivered 3,629 kilograms to the space station, about the weight of two F-150 pickup trucks,” said Frank DeMauro.

The OA-4 Cygnus alone will deliver some 3,500 kilograms.

Once in orbit, Cygnus fires its onboard thrusters to precisely guide itself close to the space station so that the astronauts can grapple it with the robotic arm and berth it to a port on the station.

Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com