Supernova G350 Kicks Up Some X-Ray Dust

[/caption]

Located some 14,700 light years from the Earth toward the center of our galaxy, a newly photographed supernova remnant cataloged as G350.1+0.3 is making astronomers scratch their heads. The star which created this unusual visage is suspected to have blown its top some 600 to 1,200 years ago. Although it would have been as bright as the event which created the “Crab”, chances are no one saw it due to the massive amounts of gas and dust at the Milky Way’s heart. Now NASA’s Chandra X-ray Observatory and the ESA’s XMM-Newton telescope has drawn back the curtain and we’re able to marvel at what happens when a supernova imparts a powerful X-ray “kick” to a neutron star!

Credit: X-ray: NASA/CXC/SAO/I.Lovchinsky et al, IR: NASA/JPL-Caltech
Photographic proof from Chandra and XMM-Newton are full of clues which give rise to the possibility that a compact object located in the influence of G350.1+0.3 may be the core region of a shattered star. Since it is off-centered from the X-ray emissions, it must have received a powerful blast of energy during the supernova event and has been moving along at a speed of 3 million miles per hour ever since. This information agrees with an “exceptionally high speed derived for the neutron star in Puppis A and provides new evidence that extremely powerful ‘kicks’ can be imparted to neutron stars from supernova explosions.”

As you look at the photo, you’ll notice one thing in particular… the irregular shape. The Chandra data in this image appears as gold while the infrared data from NASA’s Spitzer Space Telescope is colored light blue. According to the research team, this unusual configuration may have been caused by the stellar debris field imparting itself into the surrounding cold molecular gas.

These results appeared in the April 10, 2011 issue of The Astrophysical Journal. The scientists on this paper were Igor Lovchinsky and Patrick Slane (Harvard-Smithsonian Center for Astrophysics), Bryan Gaensler (University of Sydney, Australia), Jack Hughes (Rutgers University), Stephen Ng (McGill University), Jasmina Lazendic (Monash University Clayton, Australia), Joseph Gelfand (New York University, Abu Dhabi), and Crystal Brogan (National Radio Astronomy Observatory).

Original Story Source: NASA Chandra News Release.

Did a Neutron Star Create the “Christmas Burst”?

[/caption]

On December 25, 2010, at 1:38 p.m. EST, NASA’s Swift Burst Alert Telescope detected a particularly long-lived gamma-ray burst in the constellation Andromeda. Lasting nearly half an hour, the burst (known as GRB 101225A) originated from an unknown distance, leaving astronomers to puzzle over exactly what may have created such a dazzling holiday display.

Now there’s not just one but two theories as to what caused this burst, both reported in papers by a research team from the Institute of Astrophysics in Granada, Spain. The papers will appear in the Dec. 1 issue of Nature.

Gamma-ray bursts are the Universe’s most luminous explosions. Most occur when a massive star runs out of nuclear fuel. As the star’s core collapses, it creates a black hole or neutron star that sends intense jets of gas and radiation outwards. As the jets shoot into space they strike gas previously shed by the star and heat it, generating bright afterglows.

NASA's Swift observatory is a satellite in low-Earth orbit, scanning the sky for the presence of gamma-ray bursts and gravitational wave forces. (NASA)

If a GRB jet happens to be aimed towards Earth it can be detected by instruments like those aboard the Swift spacecraft.

Luckily GRBs usually come from vast distances, as they are extremely powerful and could potentially pose a danger to life on Earth should one strike directly from close enough range. Fortunately for us the odds of that happening are extremely slim… but not nonexistent. That is one reason why GRBs are of such interest to astronomers… gazing out into the Universe is, in one way, like looking down the barrels of an unknown number of distant guns.

The 2010 “Christmas burst”, as the event also called, is suspected to feature a neutron star as a key player. The incredibly dense cores that are left over after a massive star’s death, neutron stars rotate extremely rapidly and have intense magnetic fields.

One of the new theories envisions a neutron star as part of a binary system that also includes an expanding red giant. The neutron star may have potentially been engulfed by the outer atmosphere of its partner. The gravity of the neutron star would have caused it to acquire more mass and thus more momentum, making it spin faster while energizing its magnetic field. The stronger field would have then fired off some of the stellar material into space as polar jets… jets that then interacted with previously-expelled gases, creating the GRB detected by Swift.

This scenario puts the source of the Christmas burst at around 5.5 billion light-years away, which coincides with the observed location of a faint galaxy.

An alternate theory, also accepted by the research team, involves the collision of a comet-like object and a neutron star located within our own galaxy, about 10,000 light-years away. The comet-like body could have been something akin to a Kuiper Belt Object which, if in a distant orbit around a neutron star, may have survived the initial supernova blast only to end up on a spiraling path inwards.

The object, estimated to be about half the size of the asteroid Ceres, would have broken up due to tidal forces as it neared the neutron star. Debris that impacted the star would have created gamma-ray emission detectable by Swift, with later-arriving material extending the duration of the GRB into the X-ray spectrum… also coinciding with Swift’s measurements.

Both of these scenarios are in line with processes now accepted by researchers as plausible explanations for GRBs thanks to the wealth of data provided by the Swift telescope, launched in 2004.

“The beauty of the Christmas burst is that we must invoke two exotic scenarios to explain it, but such rare oddballs will help us advance the field,” said Chryssa Kouveliotou, a co-author of the study at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

More observations using other instruments, such as the Hubble Space Telescope, will be needed to discern which of the two theories is most likely the case… or perhaps rule out both, which would mean something else entirely is the source of the 2010 Christmas burst!

Read more on the NASA mission site here.

 

The Crab Gets Cooked With Gamma Rays

[/caption]

It’s one of the most famous sights in the night sky… and 957 years ago it was bright enough to be seen during the day. This supernova event was one of the most spectacular of its kind and it still delights, amazes and even surprises astronomers to this day. Think there’s nothing new to know about M1? Then think again…

An international collaboration of astrophysicists, including a group from the Department of Physics in Arts & Sciences at Washington University in St. Louis, has detected pulsed gamma rays coming from the heart of the “Crab”. Apparently the central neutron star is putting off energies that can’t quite be explained. These pulses between range 100 and 400 billion electronvolts (Gigaelectronvolts, or GeV), far higher than 25 GeV, the most energetic radiation recorded. To give you an example, a 400 GeV photon is almost a trillion times more energetic than a light photon.

“This is the first time very-high-energy gamma rays have been detected from a pulsar – a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the Sun,” said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

We can thank the Arizona based Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of four 12-meter Cherenkov telescopes covered in 350 mirrors for the findings. It is continually monitoring Earth’s atmosphere for the fleeting signals of gamma-ray radiation. However, findings like these on such a well-known object is nearly unprecedented.

“We presented the results at a conference and the entire community was stunned,” says Henric Krawczynski, PhD, professor of physics at Washington University. The WUSTL group led by James H. Buckley, PhD, professor of physics, and Krawczynski is one of six founding members of the VERITAS consortium.

An X-ray image of the Crab Nebula and pulsar. Image by the Chandra X-ray Observatory, NASA/CXC/SAO/F. Seward.

We know the Crab’s story and how its pulsar sweeps around like a lighthouse… But Krennrich said such high energies can’t be explained by the current understanding of pulsars. Not even curvature radiation can be at the root of these gamma-ray emissions.

“The pulsar in the center of the nebula had been seen in radio, optical, X-ray and soft gamma-ray wavelengths,” says Matthias Beilicke, PhD, research assistant professor of physics at Washington University. “But we didn’t think it was radiating pulsed emissions above 100 GeV. VERITAS can observe gamma-rays between100 GeV and 30 trillion electronvolts (Teraelectronvolts or TeV).”

Just enough to cook one crab… well done!

Original Story Source: Iowa State University News Release. For Further Reading: Washington University in St. Louis News Release.