Astronomers Measure a 1-billion Tesla Magnetic Field on the Surface of a Neutron Star

We recently observed the strongest magnetic field ever recorded in the Universe. The record-breaking field was discovered at the surface of a neutron star called GRO J1008-57 with a magnetic field strength of approximately 1 BILLION Tesla. For comparison, the Earth’s magnetic field clocks in at about 1/20,000 of a Tesla – tens of trillions of times weaker than you’d experience on this neutron star…and that is a good thing for your general health and wellbeing.

Neutron stars are the “dead cores” of once massive stars which have ended their lives as supernova. These stars exhausted their supply of hydrogen fuel in their core and a power balance between the internal energy of the star surging outward, and the star’s own massive gravity crushing inward, is cataclysmically unbalanced – gravity wins. The star collapses in on itself. The outer layers fall onto the core crushing it into the densest object we know of in the Universe – a neutron star. Even atoms are crushed. Negatively charged electrons are forced into the atomic nuclei meeting their positive proton counterparts creating more neutrons. When the core can be crushed no further, the outer remaining material of the star rebounds back into space in a massive explosion – a supernova. The resulting neutron star, made of the crushed stellar core, is so dense that a single sugar-cube-sized sampling would weigh billions of tons – as much as a mountain (though if you’re “worthy” you MIGHT able to lift it since Thor’s Hammer is made of the stuff). Neutron stars are typically about 20km in diameter and can still be a million degrees Kelvin at the surface.

But if they’re “dead,” how can neutron stars be some of the most magnetic and powerful objects in the Universe?

Composite image of the maelstrom at the heart of the Crab Nebula powered by a neutron star – Chandra X-Ray Observatory
Continue reading “Astronomers Measure a 1-billion Tesla Magnetic Field on the Surface of a Neutron Star”

Astronomers Think They’ve Found the Neutron Star Remnant From Supernova 1987a

In 1987, astronomers witnessed a spectacular event when they spotted a titanic supernova 168,000 light-years away in the Hydra constellation. Designated 1987A (since it was the first supernova detected that year), the explosion was one of the brightest supernova seen from Earth in more than 400 years. The last time was Kepler’s Supernova, which was visible to Earth-bound observers back in 1604 (hence the designation SN 1604).

Since then, astronomers have tried in vain to find the company object they believed to be at the heart of the nebula that resulted from the explosion. Thanks to recent observations and a follow-up study by two international teams of astronomers, new evidence has been provided that support the theory that there is a neutron star at the heart of SN 1604 – which would make it the youngest neutron star known to date.

Continue reading “Astronomers Think They’ve Found the Neutron Star Remnant From Supernova 1987a”

Astronomers Map the Surface of a Pulsar

When stars exhaust their supply of fuel, they collapse under their own weight and explode, blowing off their outer layers in an event known as a “supernova”. In some cases, these events leave behind neutron stars, the smallest and densest of stellar objects (with the exception of certain theoretical stars) that sometimes spin rapidly. Pulsars, a class of neutron star, can spin up to several hundred times per second.

One such object, designated J0030+0451 (J0030), is located about 1,100 light-years from Earth in the Pisces constellation. Recently, scientists using NASA’s Neutron star Interior Composition Explorer (NICER) were able to measure the pulsar’s size and mass. In the process, they also managed to locate the various “hot spots” on its surface, effectively creating the first map of a neutron star.

Continue reading “Astronomers Map the Surface of a Pulsar”

The Pressure Inside Every Proton is 10x That Inside Neutron Stars

Neutron stars are famous for combining a very high-density with a very small radius. As the remnants of massive stars that have undergone gravitational collapse, the interior of a neutron star is compressed to the point where they have similar pressure conditions to atomic nuclei. Basically, they become so dense that they experience the same amount of internal pressure as the equivalent of 2.6 to 4.1 quadrillion Suns!

In spite of that, neutron stars have nothing on protons, according to a recent study by scientists at the Department of Energy’s Thomas Jefferson National Accelerator Facility. After conducting the first measurement of the mechanical properties of subatomic particles, the scientific team determined that near the center of a proton, the pressure is about 10 times greater than the pressure in the heart of a neutron star.

The study which describes the team’s findings, titled “The pressure distribution inside the proton“, recently appeared in the scientific journal Nature. The study was led by Volker Burkert, a nuclear physicist at the Thomas Jefferson National Accelerator Facility (TJNAF), and co-authored by Latifa Elouadrhiri and Francois-Xavier Girod – also from the TJNAF.

Cross-section of a neutron star. Credit: Wikipedia Commons/Robert Schulze

Basically , they found that the pressure conditions at the center of a proton were 100 decillion pascals – about 10 times the pressure at the heart of a neutron star. However, they also found that pressure inside the particle is not uniform, and drops off as the distance from the center increases. As Volker Burkert, the Jefferson Lab Hall B Leader, explained:

“We found an extremely high outward-directed pressure from the center of the proton, and a much lower and more extended inward-directed pressure near the proton’s periphery… Our results also shed light on the distribution of the strong force inside the proton. We are providing a way of visualizing the magnitude and distribution of the strong force inside the proton. This opens up an entirely new direction in nuclear and particle physics that can be explored in the future.”

Protons are composed of three quarks that are bound together by the strong nuclear force, one of the four fundamental forces that government the Universe – the other being electromagnetism, gravity and weak nuclear forces. Whereas electromagnetism and gravity produce the effects that govern matter on the larger scales, weak and strong nuclear forces govern matter at the subatomic level.

Previously, scientists thought that it was impossible to obtain detailed information about subatomic particles. However, the researchers were able to obtain results by pairing two theoretical frameworks with existing data, which consisted of modelling systems that rely on electromagnetism and gravity. The first model concerns generalized parton distributions (GDP) while the second involve gravitational form factors.

Quarks inside a proton experience a force an order of magnitude greater than matter inside a neutron star. Credit: DOE’s Jefferson Lab

Patron modelling refers to modeling subatomic entities (like quarks) inside protons and neutrons, which allows scientist to create 3D images of a proton’s or neutron’s structure (as probed by the electromagnetic force). The second model describes the scattering of subatomic particles by classical gravitational fields, which describes the mechanical structure of protons when probed via the gravitational force.

As noted, scientists previously thought that this was impossible due to the extreme weakness of the gravitational interaction. However, recent theoretical work has indicated that it could be possible to determine the mechanical structure of a proton using electromagnetic probes as a substitute for gravitational probes. According to Latifa Elouadrhiri – a Jefferson Lab staff scientist and co-author on the paper – that is what their team set out to prove.

“This is the beauty of it. You have this map that you think you will never get,” she said. “But here we are, filling it in with this electromagnetic probe.”

For the sake of their study, the team used the DOE’s Continuous Electron Beam Accelerator Facility at the TJNAF to create a beam of electrons. These were then directed into the nuclei of atoms where they interacted electromagnetically with the quarks inside protons via a process called deeply virtual Compton scattering (DVCS). In this process, an electron exchanges a virtual photon with a quark, transferring energy to the quark and proton.

The bare masses of all 6 flavors of quarks, proton and electron, shown in proportional volume. Credit: Wikipedia/Incnis Mrsi

Shortly thereafter, the proton releases this energy by emitting another photon while remaining intact. Through this process, the team was able to produced detailed information of the mechanics going on in inside the protons they probed. As Francois-Xavier Girod, a Jefferson Lab staff scientist and co-author on the paper, explained the process:

“There’s a photon coming in and a photon coming out. And the pair of photons both are spin-1. That gives us the same information as exchanging one graviton particle with spin-2. So now, one can basically do the same thing that we have done in electromagnetic processes — but relative to the gravitational form factors, which represent the mechanical structure of the proton.”

The next step, according to the research team, will be to apply the technique to even more precise data that will soon be released. This will reduce uncertainties in the current analysis and allow the team to reveal other mechanical properties inside protons – like the internal shear forces and the proton’s mechanical radius. These results, and those the team hope to reveal in the future, are sure to be of interest to other physicists.

“We are providing a way of visualizing the magnitude and distribution of the strong force inside the proton,” said Burkert. “This opens up an entirely new direction in nuclear and particle physics that can be explored in the future.”

Perhaps, just perhaps, it will bring us closer to understanding how the four fundamental forces of the Universe interact. While scientists understand how electromagnetism and weak and strong nuclear forces interact with each other (as described by Quantum Mechanics), they are still unsure how these interact with gravity (as described by General Relativity).

If and when the four forces can be unified in a Theory of Everything (ToE), one of the last and greatest hurdles to a complete understanding of the Universe will finally be removed.

Further Reading: Jefferson Lab, Cosmos Magazine, Nature

A Magnetar Just Woke Up After Three Years of Silence

When stars reach the end of their main sequence, they undergo a gravitational collapse, ejecting their outermost layers in a supernova explosion. What remains afterward is a dense, spinning core primarily made up of neutrons (aka. a neutron star), of which only 3000 are known to exist in the Milky Way Galaxy. An even rarer subset of neutron stars are magnetars, only two dozen of which are known in our galaxy.

These stars are especially mysterious, having extremely powerful magnetic fields that are almost powerful enough to rip them apart. And thanks to a new study by a team of international astronomers, it seems the mystery of these stars has only deepened further. Using data from a series of radio and x-ray observatories, the team observed a magnetar last year that had been dormant for about three years, and is now behaving somewhat differently.

The study, titled “Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR“, recently appeared in The Astrophysical Journal. The team was led by Dr Fernando Camilo – the Chief Scientist at the South African Radio Astronomy Observatory (SARAO) – and included over 200 members from multiple universities and research institutions from around the world.

Magnetars are so-named because their magnetic fields are up to 1000 times stronger than those of ordinary pulsating neutron stars (aka. pulsars). The energy associated with these these fields is so powerful that it almost breaks the star apart, causing them to be unstable and display great variability in terms of their physical properties and electromagnetic emissions.

Whereas all magnetars are known to emit X-rays, only four have been known to emit radio waves. One of these is PSR J1622-4950 – a magnetar located about 30,000 light years from Earth. As of early 2015, this magnetar had been in a dormant state. But as the team indicated in their study, astronomers using the CSIRO Parkes Radio Telescope in Australia noted that it was becoming active again on April 26th, 2017.

At the time, the magnetar was emitting bright radio pulses every four seconds. A few days later, Parkes was shut down as part of a month-long planned maintenance routine. At about the same time, South Africa’s MeerKAT radio telescope began monitoring the star, despite the fact that it was still under construction and only 16 of its 64 radio dishes were available. Dr Fernando Camilo describes the discovery in a recent SKA South Africa press release:

“[T]he MeerKAT observations proved critical to make sense of the few X-ray photons we captured with NASA’s orbiting telescopes – for the first time X-ray pulses have been detected from this star, every 4 seconds. Put together, the observations reported today help us to develop a better picture of the behaviour of matter in unbelievably extreme physical conditions, completely unlike any that can be experienced on Earth”.

Artist’s rendering of an outburst on an ultra-magnetic neutron star, also called a magnetar. Credit: NASA/Goddard Space Flight Center

After the initial observations were made by the Parkes and MeerKAT observatories, follow-up observations were conducted using the XMM-Newton x-ray space observatory, Swift Gamma-Ray Burst Mission, the Chandra X-ray Observatory, and the Nuclear Spectroscopic Telescope Array (NuSTAR). With these combined observations, the team noted some very interesting things about this magnetar.

For one, they determined that PSR J1622-4950’s radio flux density, while variable, was approximately 100 times greater than it was during its dormant state. In addition, the x-ray flux was at least 800 times larger one month after reactivation, but began decaying exponentially over the course of a 92 to 130 day period. However, the radio observations noted something in the magnetar’s behavior that was quite unexpected.

While the overall geometry that was inferred from PSR J1622-4950’s radio emissions was consistent with what had been determined several years prior, their observations indicated that the radio emissions were now coming from a different location in the magnetosphere. This above all indicates how radio emissions from magnetars could differ from ordinary pulsars.

This discovery has also validated the MeerKAT Observatory as a world-class research instrument. This observatory is part of the Square Kilometer Array (SKA), the multi-radio telescope project that is building the world’s largest radio telescope in Australia, New Zealand, and South Africa. For its part, MeerKAT uses 64 radio antennas to gather radio images of the Universe to help astronomers understand how galaxies have evolved over time.

Aerial image of the South African MeerKAT radio telescope in the Karoo, South Africa. Credit: SKA

Given the sheer volume of data collected by these telescopes, MeerKAT relies on both cutting edge-technology and a highly-qualified team of operators. As Abbott indicated, “we have a team of the brightest engineers and scientists in South Africa and the world working on the project, because the problems that we need to solve are extremely challenging, and attract the best”.

Prof Phil Diamond, the Director-General of the SKA Organization leading the development of the Square Kilometer Array, was also impressed by the contribution of the MeerKAT team. As he stated in an SKA press release:

“Well done to my colleagues in South Africa for this outstanding achievement. Building such telescopes is extremely difficult, and this publication shows that MeerKAT is becoming ready for business. As one of the SKA precursor telescopes, this bodes well for the SKA. MeerKAT will eventually be integrated into Phase 1 of SKA-mid telescope bringing the total dishes at our disposal to 197, creating the most powerful radio telescope on the planet”.

When the SKA goes online, it will be one of the most powerful ground-based telescopes in the world and roughly 50 times more sensitive than any other radio instrument. Along with other next-generation ground-based and space-telescopes, the things it will reveal about our Universe and how it evolved over time are expected to be truly groundbreaking.

Further Reading: SKA Africa, SKA, The Astrophysical Journal

Astronomers See A Dead Star Come Back To Life Thanks To A Donor Star

It’s not exactly an organ donor, but a star in the direction of the hyper-populated core of the Milky Way donating some of its mass to a dormant neighbor. The result? The dormant neighbor sprung back to life with an X-ray burst captured by the ESA‘s INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) space observatory.

“INTEGRAL caught a unique moment in the birth of a rare binary system” – Enrico Bozzo, University of Geneva.

The neighbors have likely been paired together for billions of years, which is not in itself noteworthy: stars often live in binary pairs. But the pair spotted by INTEGRAL on August 13th 2017 is very unusual. The donor star is a red giant, and the recipient is a neutron star. So far, astronomers only know of 10 of these pairs, called ‘symbiotic X-ray binaries’.

To understand what’s happening between these neighbors, we have to look at stellar evolution.

The donor star is in its red giant phase. That’s when a star in the same mass range as our star reaches the later stage of its life. As its mass is depleted, gravity can’t hold the star together in the same way it has for the early part of its life. The star expands outwards by millions of kilometers. As it does so, it sheds stellar material from its outer layers in a solar wind that travels several hundreds of km/sec.

The red giant and the neutron star may have traveled different evolutionary pathways, but proximity made them partners. Image: ESA

Its neighbor is in a different state. It’s a star that had an initial mass of about 25 to 30 times the Sun. When a star this big approaches the end of its life, it suffers a different fate. Stars this large live fast, and burn through their fuel quickly. Then, they explode as supernovae, in this case leaving a corpse behind. In the binary system captured by INTEGRAL, the corpse is a spinning neutron star with a magnetic field.

Neutron stars are dense. In fact, they’re some of the densest stellar objects we know of, packing as much mass as one-and-a-half of our Suns into an object that’s only about 10 km across.
When the red giant’s stellar wind met the neutron star, the neutron star slowed its rate of spin, and burst into life, emitting high-energy x-rays.

“INTEGRAL caught a unique moment in the birth of a rare binary system,” says Enrico Bozzo from University of Geneva and lead author of the paper that describes the discovery. “The red giant released a sufficiently dense slow wind to feed its neutron star companion, giving rise to high-energy emission from the dead stellar core for the first time.”

After INTEGRAL spotted the x-ray burst from the binary, other observations quickly followed. The ESA’s XMM Newton and NASA’s NuSTAR and Swift space telescopes got to work, along with ground-based telescopes. These observations confirmed what initial observations showed: this is a very peculiar pair of stars.

“…we believe we saw the X-rays turning on for the first time.” – Erik Kuulkers, ESA INTEGRAL Project Scientist.

The neutron star spins very slowly, taking about 2 hours to revolve, which is remarkable since other neutron stars can spin many times per second. The magnetic field of the neutron star was also much stronger than expected. But the magnetic field around a neutron star is thought to weaken over time, making this a relatively young neutron star. And a red giant is old, so this is a very odd pairing of old red giant with young neutron star.

One possible explanation is that the neutron star didn’t form from a supernova, but from a white dwarf. In that scenario, the white dwarf would’ve collapsed into a neutron star after a very long period of feeding on material from the red giant. That would explain the disparity in ages of the two stars in the system.

An artist’s illustration of ESA’s INTEGRAL space observatory. INTEGRAL was launched in 2002 to study some of the most energetic phenomena in the universe. Image: ESA.

“These objects are puzzling,” says Enrico. “It might be that either the neutron star magnetic field does not decay substantially with time after all, or the neutron star actually formed later in the history of the binary system. That would mean it collapsed from a white dwarf into a neutron star as a result of feeding off the red giant over a long time, rather than becoming a neutron star as a result of a more traditional supernova explosion of a short-lived massive star.”

The next question is how long will this process go on? Is it short-lived, or the beginning of a long-term relationship?

“We haven’t seen this object before in the past 15 years of our observations with INTEGRAL, so we believe we saw the X-rays turning on for the first time,” says Erik Kuulkers, ESA’s INTEGRAL project scientist. “We’ll continue to watch how it behaves in case it is just a long ‘burp’ of winds, but so far we haven’t seen any significant changes.”

The INTEGRAL space observatory was launched in 2002 to study some of the most energetic phenomena in the universe. It focuses on things like black holes, neutron stars, active galactic nuclei and supernovae. INTEGRAL is a European Space Agency mission in cooperation with the United States and Russia. Its projected end date is December, 2018.

Kilonova Neutron Star Collision Probably Left Behind a Black Hole

In February of 2016, scientists from the Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the first-ever detection of gravitational waves. A little over a century after they were first predicted by Einstein’s Theory of General Relativity, we finally had proof that this phenomenon existed. In August of 2017, another major breakthrough occurred when LIGO detected waves that were believed to be caused by a neutron star merger.

Shortly thereafter, scientists at LIGO, Advanced Virgo, and the Fermi Gamma-ray Space Telescope were able to determine where in the sky the neutron star merger occurred. While many studies have focused on the by-products of this merger, a new study by researchers from Trinity University, the University of Texas at Austin and Eureka Scientific, has chosen to focus on the remnant, which they claim is likely a black hole.

For the sake of their study, which recently appeared online under the title “GW170817 Most Likely Made a Black Hole“, the team consulted data from the Chandra X-ray Observatory to examine what resulted of the supernova merger. This data was obtained during Director’s Discretionary Time observations that were made on December 3rd and 6th, 2017, some 108 days after the merger.

This data showed a light-curve increase in the X-ray band which was compatible to the radio flux increase that was reported by a previous study conducted by the same team. These combined results suggest that radio and X-ray emissions were being produced at the same source, and that the rising light-curve that followed the merger was likely due to an increase in accelerated charged particles in the external shock – the region where an outflow of gas interacts with the interstellar medium.

As they indicate in their study, this could either be explained as the result of a more massive neutron star being formed from the merger, or a black hole:

“The merger of two neutron stars with mass 1.48 ± 0.12 M and 1.26 ± 0.1 M — where the merged object has a mass of 2.74 +0.04-0.01 M… could result in either a neutron star or a black hole. There might also be a debris disk that gets accreted onto the central object over a period of time, and which could be source of keV X-rays.”

The team also ruled out various possibilities of what could account for this rise in X-ray luminosity. Basically, they concluded that the X-ray photons were not coming from a debris disk, which would have been left over from the merger of the two neutron stars. They also deduced that they would not be produced by a relativistic jet spewing from the remnant, since the flux would be much lower after 102 days.

 

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold. Credit: Dana Berry, SkyWorks Digital, Inc.

All of this indicated that the remnant was more likely to be a black hole than a hyper-massive neutron star. As they explained:

“We show next that if the merged object were a hyper-massive neutron star endowed with a strong magnetic field, then the X-ray luminosity associated with the dipole radiation would be larger than the observed luminosity 10 days after the event, but much smaller than the observed flux at t ~ 100 days. This argues against the formation of a hyper-massive neutron star in this merger.”

Last, but not least, they considered the X-ray and radio emissions that were present roughly 100 days after the merger. These, they claim, are best explained by continued emissions coming from the merger-induced shock (and the not remnant itself) since these emissions would continue to propagate in the interstellar medium around the remnant. Combined with early X-ray data, this all points towards GW170817 now being a black hole.

The first-ever detection of gravitational waves signaled the dawn of a new era in astronomical research. Since that time, observatories like LIGO, Advanced Virgo, and GEO 600 have also benefited from information-sharing and new studies that have indicated that mergers are more common than previously thought, and that gravity waves could be used to probe the interior of supernovae.

With this latest study, scientists have learned that they are not only able to detect the waves caused by black hole mergers, but even the creation thereof. At the same time, it shows how the study of the Universe is growing. Not only is astronomy advancing to the point where we are able to study more and more of the visible Universe, but the invisible Universe as well.

Further Reading: LIGO, arXiv

Second Fastest Pulsar Spins 42,000 Times a Minute

Pulsars are what remains when a massive star undergoes gravitational collapse and explodes in a supernova. These remnants (also known as neutron stars) are extremely dense, with several Earth-masses crammed into a space the size of a small country. They also have powerful magnetic fields, which causes them to rotate rapidly and emit powerful beams of gamma rays or x-rays – which lends them the appearance of a lighthouse.

In some cases, pulsars spin especially fast, taking only milliseconds to complete a single rotation. These “millisecond pulsars” remain a source of mystery for astronomers. And after following up on previous observations, researchers using the Low Frequency Array (LOFAR) radio telescope in the Netherlands identified a pulsar (PSR J0952?0607) that spins more than 42,000 times per minute, making it the second-fastest pulsar ever discovered.

The study which described their findings, titled “LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field“, recently appeared in The Astrophysical Journal Letters. Led by Dr. Cees Bassa, an astrophysicist from the University of Utrecht and the Netherlands Institute for Radio Astronomy (ASTRON), the team conducted follow-up observations of PSR J0952?0607, a millisecond pulsar located 3,200 to 5,700 light-years away.

An all-sky view in gamma ray light made with the Fermi gamma ray space telescope. Credit: NASA/DOE/International LAT Team

This study was part of an ongoing LOFAR survey of energetic sources originally identified by NASA’s Fermi Gamma-ray space telescope. The purpose of this survey was to distinguish between the gamma-ray sources Fermi detected, which could have been caused by neutron stars, pulsars, supernovae or the regions around black holes. As Elizabeth Ferrara, a member of the discovery team at NASA’s Goddard Space Center, explained in a NASA press release:

“Roughly a third of the gamma-ray sources found by Fermi have not been detected at other wavelengths. Many of these unassociated sources may be pulsars, but we often need follow-up from radio observatories to detect the pulses and prove it. There’s a real synergy across the extreme ends of the electromagnetic spectrum in hunting for them.”

Their follow-up observations indicated that this particular source was a pulsar that spins at a rate of 707 revolutions (Hz) per second, which works out to 42,000 revolutions per minute. This makes it, by definition, a millisecond pulsar. The team also confirmed that it is about 1.4 Solar Masses and is orbited every 6.4 hours by a companion star that has been stripped down to less than 0.05 Jupiter masses.

The presence of this lightweight companion is a further indication of how the spin of this pulsar became so rapid. Over time, matter would have been stripped away from the star, gradually accreting onto PSR J0952?0607. This would not only raise its spin rate but also greatly increase its electromagnetic emissions. The process continues to this day, with the star becoming increasingly smaller as the pulsar becomes more energetic.

Artist’s impression of a pulsar siphoning material from a companion star. Credit: NASA

Because of the nature of this relationship (which can only be described as “cannibalistic”), systems like PSR J0952?0607 are often called “black widow” or “redback” pulsars. Most of these systems were found by following up on sources identified by the Fermi mission, since the process has been known to result in a considerable amount of electromagnetic radiation being released.

Beyond the discovery of this record-setting pulsar, the LOFAR discovery could also be an indication that there is a new population of ultra-fast spinning pulsars in our Universe. As Dr. Bassa explained:

“LOFAR picked up pulses from J0952 at radio frequencies around 135 MHz, which is about 45 percent lower than the lowest frequencies of conventional radio searches. We found that J0952 has a steep radio spectrum, which means its radio pulses fade out very quickly at higher frequencies. It would have been a challenge to find it without LOFAR.”

The fastest spinning pulsar known, PSR J1748-2446ad, spins just slightly faster than PSR J0952?0607 – reaching a rate of nearly 43,000 rpm (or 716 revolutions per second). But some theorists think that pulsars could spin as fast as 72,000 rpm (almost twice as fast) before breaking up. This remains a theory, since rapidly-spinning pulsars are rather difficult to detect.

But with the help of instrument like LOFAR, that could be changing. For instance, both PSR J1748-2446ad and PSR J0952?0607 were shown to have steep spectra – much like radio galaxies and Active Galactic Nuclei.  The same was true of J1552+5437, another millisecond pular detected by LOFAR which spins at 25,000 rpm.

As Ziggy Pleunis – a doctoral student at McGill University in Montreal and a co-author on the study – indicated, this could be a sign that the fastest-spinning pulsars are just waiting to be found.

“There is growing evidence that the fastest-spinning pulsars tend to have the steepest spectra,” he said. “Since LOFAR searches are more sensitive to these steep-spectrum radio pulsars, we may find that even faster pulsars do, in fact, exist and have been missed by surveys at higher frequencies.”

As with many other areas of astronomical research, improvements in instrumentation and methodology are allowing for new and exciting discoveries. As expected, some of the things we are finding are forcing astronomers to rethink more than a few previously-held assumptions about the nature and limits of certain phenomena.

Be sure to enjoy this NASA video that explains “black widow” pulsars and the ongoing search to find them:

Further Reading: NASA, Astrophysical Journal Letters