President Obama Hails NASA Curiosity rover landing on Mars

Image Caption: Landing ellipse for Curiosity rover inside Gale Crater at the foot of Mount Sharp on Mars and will attempt to climb the mountain later in the mission. Credit: NASA

US President Barack Obama hailed the spectacular landing success of NASA’s Curiosity rover on Aug. 6 inside Gale Crater and eagerly awaits the discoveries to come. More accolades for Curiosity and the rover team are pouring in from all across the globe.

The White House issued the following statement:

Statement by the President on Curiosity Landing on Mars

“Tonight, on the planet Mars, the United States of America made history.

The successful landing of Curiosity – the most sophisticated roving laboratory ever to land on another planet – marks an unprecedented feat of technology that will stand as a point of national pride far into the future. It proves that even the longest of odds are no match for our unique blend of ingenuity and determination.

Tonight’s success, delivered by NASA, parallels our major steps forward towards a vision for a new partnership with American companies to send American astronauts into space on American spacecraft. That partnership will save taxpayer dollars while allowing NASA to do what it has always done best – push the very boundaries of human knowledge. And tonight’s success reminds us that our preeminence – not just in space, but here on Earth – depends on continuing to invest wisely in the innovation, technology, and basic research that has always made our economy the envy of the world.

I congratulate and thank all the men and women of NASA who made this remarkable accomplishment a reality – and I eagerly await what Curiosity has yet to discover.”

The 1 ton Mini Cooper sized robot geologist and roving chemistry lab is seeking the signs of life on Mars and is loaded with 165 pounds of the most sophisticated science instruments ever delivered to the surface of the Red Planet.

During a two-year prime mission, Curiosity the rover will investigate whether the region has ever offered conditions favorable for microbial life, and search for organic molecules – the chemical ingredients for life.

Ken Kremer

Long Live American Curiosity – Now We Start Exploring Mars

Image Caption: This image shows one of the first views from NASA’s Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (early morning hours Aug. 6 EDT). It was taken through a “fisheye” wide-angle lens on one of the rover’s Hazard-Avoidance cameras. These engineering cameras are located at the rover’s base. As planned, the early images are lower resolution. Credit: NASA/JPL-Caltech

“Welcome to Mars,” said Charles Elachi, Director of the Jet Propulsion Laboratory, Pasadena, Calif., following the dramatic and successful touchdown of Curiosity on the Red Planet at 1:32 AM EDT Aug. 6 (10:32 PM Aug 5). “Tonight was a great drama. We did the landing. Tomorrow we start exploring Mars and make new discoveries every day. Our Curiosity has no limits and we will explore the solar system.”

Tumultuous and long lasting jubilation erupted at Mission Control at JPL when the spectacular pinpoint landing success was announced and continued during the post landing news briefing at JPL.

NASA’s Curiosity Mars Science Lab (MSL) safely survived the harrowing plunge and nail biting descent through the Martian atmosphere known as the “7 minutes of Terror”. After hitting the thin atmosphere at 13,200 MPH (5,900 m/s), the robot perfectly executed the unprecedented entry, descent and landing (EDL) sequence utilizing a rocket powered guided descent, supersonic parachutes and then culminating in the never before tried “sky crane maneuver” and helicopter-like touch down at 0 MPH barely 7 minutes later.

Curiosity landed near the foot of a layered mountain three miles (5 km) tall and 96 miles(154 km) in diameter inside Gale Crater which may once have contained a lake. She relayed a few initial thumbnail pictures within minutes after touchdown via NASA’s Mars Odyssey orbiter.

Larger images showing the Gale crater rim were sent back during the 2nd Odyssey over flight about 2 hours later. Many higher resolution images will be transmitted back to Earth in the coming days including the first 360 degree panorama.

“Curiosity’s landing site is beginning to come into focus,” said John Grotzinger, project manager of NASA’s Mars Science Laboratory mission, at the California Institute of Technology in Pasadena. “In the image (above), we are looking to the northwest. What you see on the horizon is the rim of Gale Crater. In the foreground, you can see a gravel field. The question is, where does this gravel come from? It is the first of what will be many scientific questions to come from our new home on Mars.”


Image Caption: Cheers for Curiosity – Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., celebrate the landing of NASA’s Curiosity rover on the Red Planet. The rover touched down on Mars the evening of Aug. 5 PDT (morning of Aug. 6 EDT). Image credit: NASA/JPL-Caltech

“Long live American Curiosity”, said John Holdren, science advisor to President Obama. “Today on Mars, history was made on Earth. It will stand as an American point of pride far in the future. I want to congratulate the team on behalf of President Obama. Landing Curiosity was the most challenging mission ever attempted in robotic planetary exploration. This 1 ton automobile sized piece of American ingenuity on Mars should put to rest any doubts about American space leadership. Even the longest odds are no match for our gutsy determination.”

Curiosity traveled for over 8 months and more than 352-million-mile (567-million-kilometer) to arrive at Mars since launching from Earth in Nov. 2011.

“Today, the wheels of Curiosity have begun to blaze the trail for human footprints on Mars. Curiosity, the most sophisticated rover ever built, is now on the surface of the Red Planet, where it will seek to answer age-old questions about whether life ever existed on Mars — or if the planet can sustain life in the future,” said NASA Administrator Charles Bolden.

“This is an amazing achievement, made possible by a team of scientists and engineers from around the world and led by the extraordinary men and women of NASA and our Jet Propulsion Laboratory. President Obama has laid out a bold vision for sending humans to Mars in the mid-2030’s, and today’s landing marks a significant step toward achieving this goal.”

“What a fantastic demonstration of what our nation can accomplish. Thank you team. I am so proud of you. And what an inspiration to our young people. Nothing is harder than landing on Mars. Our leadership will make this world better.”

Curiosity is a 10 foot long (3 m) car-sized robotic geologist. The 1 ton behemoth is a roving chemistry lab with 10 state-of-the-art science instruments that will collect and analyze soil and rock samples and zap rocks from a distance with a laser to search for carbon in the form of organic molecules – the building blocks of life.

Image Caption: Gale Crater landing site for Curiosity beside layered Martian mountain with landing ellipse. Credit: NASA

“On behalf of the 400 members of the science team we thank everybody involved in this enterprise the landing team,” said John Grotzinger, the MSL Project Scientist of the California Institute of Technology. “There is no greater inspiration to school kids than going to Mars. The cost of MSL for each American is the cost of a movie. That’s a movie I want to see.”

During a 2 year prime mission, she will search for evidence of habitats that could preserve signs of Martian microbial life. She will rove the crater floor seeking evidence of water related phyllosilicates and sulfates and eventually climb up the nearby mountain, nicknamed Mount Sharp.

Ken Kremer

Super Bowl of Planetary Exploration – Great Convergence of Spacecraft for Curiosity Mars Landing

Image caption: This artist’s still shows how NASA’s Curiosity rover will communicate with Earth during landing. As the rover descends to the surface of Mars, it will send out two different types of data: basic radio-frequency tones that go directly to Earth (pink dashes) and more complex UHF radio data (blue circles) that require relaying by orbiters. NASA’s Odyssey orbiter will pick up the UHF signal and relay it immediately back to Earth, while NASA’s Mars Reconnaissance Orbiter will record the UHF data and play it back to Earth at a later time. Image credit: NASA/JPL-Caltech

Curiosity is just hours away from ‘do or die’ time and the high stakes and harrowing “7 Minutes of Terror” after an 8 month journey to touchdown on the Red Planet and potentially make historic discoveries that could ultimately answer the question ‘Are We Alone?’

An armada of spacecraft are converging at Mars for the historic landing of NASA’s Curiosity Mars Science Lab rover, the most daring, daunting and complex robotic mission that NASA has ever attempted. See the Video below

“Tonight is the Super Bowl of Planetary Exploration,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, at a NASA JPL news briefing on Sunday (Aug. 5). “One yard line, one play left. We score and win, or we don’t score and we don’t win.”

“We are about to land a rover that is 10 times heavier and with 15 times the payload [compared to earlier rovers]. No matter what happens, I just want the team to know I am incredible proud and privileged to have worked with these guys and gals.”

“This is the most challenging landing we have ever attempted.”

“Mars Odyssey and Mars Reconnaissance Orbiter (MRO) are in good shape to relay the entry, descent and landing data.”

The trajectory to the atmospheric aim point is so precise that engineers decided to cancel the last course correction maneuver firing planned for today.

Tonight at around 1 AM EDT, Curiosity smashes into the Martian atmosphere at over 13,200 MPH (5,900 m/s) leading to an unprecedented entry, descent and landing sequence culminating in the never before tried “skycrane maneuver” and touchdown at 0 MPH just 7 minutes later astride a 3 mile (5 km ) mountain inside Gale Crater. Mount Sharp represents perhaps millions to perhaps billions of years of Mars geologic history stretching from the ancient wetter time to the more recent desiccated era.

“The team and the spacecraft are ready,” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL. “We did everything possible to deserve success tonight, although as we all know we can never guarantee success. I am rationally confident and emotionally terrified and ready for EDL.”

Video Caption:This artist’s animation shows how orbiters over Mars will monitor the landing of NASA’s Curiosity rover.The animation starts with the path of NASA’s Mars Science Laboratory spacecraft capsule — which has the Curiosity rover tucked inside — speeding towards its Martian landing site in Gale Crater. Then, the paths of NASA’s Mars Odyssey orbiter and Mars Reconnaissance Orbiter become visible. Curiosity will be sending some basic radio-frequency tones straight back to Earth during its entry, descent and landing, on Aug. 5 PDT (Aug. 6 EDT). But sending more detailed engineering data about the landing is more complicated. Those kinds of data will be sent by Curiosity to the orbiters Odyssey and MRO, which will then relay them back to NASA’s Deep Space Network antennas on Earth. Curiosity can only send the data to Odyssey and MRO when it can see the orbiters — as soon as they rise above and before they set below the Martian horizon. Image Credit: NASA/JPL-Caltech

The 6 wheeled SUV sized rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Under the best circumstance, the first signals from the surface could be transmitted via Odyssey within a few minutes of touchdown.

Curiosity is a robotic geologist and a roving chemistry lab with 10 state-of-the-art science instruments that will collect and analyze soil and rock samples and zap rocks from a distance with a laser to search for carbon in the form of organic molecules – the building blocks of life.

“We will attempt to have the MRO HiRISE camera point at MSL and get an image of it the final phases of its descent going down to Mars,” said McCuistion. “This will be difficult because of all the gyrations by the spacecraft. It’s pretty challenging. It will be very tough. We were lucky to get one of Phoenix. I am hopeful”

“We have the opportunity for untold discoveries. We couldn’t even imagine going to this place on Mars a few years ago.”

“If we are successful, it will be one of the greatest feats in exploration ever!”

Watch NASA TV online for live coverage of the Curiosity landing on Aug. 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

When are the First Pictures Expected from Curiosity

Image Caption: This graphic shows the locations of the cameras on NASA’s Curiosity rover. The rover’s mast features seven cameras: the Remote Micro Imager, part of the Chemistry and Camera suite; four black-and-white Navigation Cameras (two on the left and two on the right) and two color Mast Cameras (Mastcams). Image credit: NASA/JPL-Caltech

If all goes well with the high stakes descent, the first images from the 1 ton Curiosity rover on the Martian surface could be received in the first few minutes after touchdown inside Gale Crater beside a huge mountain with layered sediments – now less than a day away.

It all depends on whether Curiosity successfully establishes a communications link with NASA’s Mars Odyssey signal relay spacecraft as the resilient orbiter simultaneously flies over the landing site and transmits the vital data indicating “Yes I’m Alive” to tracking stations back on Earth for analysis by anxiously waiting engineers at NASA’s Jet Propulsion Lab in Pasadena, Calif.

“We are expecting Odyssey to relay good news,” said Steve Sell of the JPL engineering team that developed and tested the mission’s complicated and never before used “sky crane” landing system. “That moment has been more than eight years in the making.”

The initial pictures would be reduced-resolution fisheye black-and-white images from the Hazard-Avoidance cameras (Hazcams), attached to the front and rear body of the rover.

“On the first night we expect the first low resolution black-and -white images from the rear hazcam, thumbnails about 50 x 50 pixels” said JPL’s Richard Cook, deputy project manager for Curiosity at today’s (Aug. 4) news briefing for reporters at JPL. “The Mars Odyssey relay will continue for 2 to 5 minutes after landing. Later that first night we hope to get a 512 x 512 pixel image looking out the rear of the rover.”

The hazcam cameras are covered with protective clear dust covers so the initial pictures might be taken through the covers if they haven’t popped off yet, Cook explained.

“The next chance to receive data and pictures comes 2 hours later post-landing during the second Odyssey over flight,” he added. “The next opportunity after that comes about 12 hours later.”

Initial thumbnail images from the rovers Mars Descent Imager (MARDI) camera,located on the belly of the rover, during the descent to the Red Planet’s surface are expected a day later on Aug. 7. These images will help pinpoint Curiosity’s exact location.

The team expects to deploy the rover’s mast with the higher resolution cameras on Aug. 7. Curiosity would then begin acquiring a 360 degree stereo panorama with the Navcam cameras the next day on Aug. 8.

The first color images are expected around Aug 8 from the Mars Hand Lens Imager, or MAHLI, one of five devices on the rover’s Inspector Gadget-like robotic arm. MAHLI will still be in the stowed position when it snaps the initial pictures.

But the whole plan depends on a successful landing and engineering checkout and instrument deployments along with no significant technical problems.

Navigators guiding NASA’s Curiosity Mars Science Lab (MSL) are threading the needle in these final 24 hours as she accelerates towards a miniscule target box barely 2 miles by 7 miles (2.8 by 11.5 kilometers) wide.

“We’re now right on target to fly through the eye of a needle, that is, our target at the top of the Mars atmosphere,” said MSL mission manager Arthur Amador, JPL, at the briefing. “The target is a box that’s 3 kilometers (1.9 miles) by 12 kilometers (7.5 miles) in dimension. And we’re flying right through it.”

Image Caption: Eye of the Needle – This graphic shows how navigators steering NASA’s Mars Science Laboratory capsule — with the Curosity rover tucked inside — are aiming for a pinpoint location above Mars. They liken it to threading the eye of a needle. Navigators are aiming for a point inside of a target box that is 1.7 by 7.15 miles (2.8 by 11.5 kilometers) wide above the Red Planet. Mars’ gravity well, which has been precisely calculated, will pull the spacecraft into the Martian atmosphere. The plane in which MSL has been traveling toward Mars — labeled trajectory plane — hits what is known as the B-plane at a 90 degree angle. The B plane is the plane perpendicular to the velocity of the spacecraft when it is far away from Mars. It is used for maneuver targeting. The northward direction of Mars’ pole is also indicated. Credit: NASA/JPL-Caltech

As of Saturday evening, Aug 4, MSL has cut its distance from Mars in half in the past day. MSL is the same distance from Mars as the Earth is from the Moon, around 250,000 miles (400,000 km) and closing at more than 8000 MPH (about 3,600 meters per second).

“Right now, I’m closer to Mars than the moon is to Earth,” Curiosity just tweeted.

After the nail biting entry, descent and landing (EDL) , the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

The 10 feet (3 meters) long mini Cooper sized Curiosity is loaded with 10 state-of-the-art science experiments that will search for organic molecules – the building blocks of life. She is the most sophisticated robot ever sent to the surface of another world. Curiosity will investigate the Red Planet like never before and look for signs of Martian microbial life and habitable zones by analyzing soil and rock samples with high powered analytical chemistry instruments.


Image Caption: This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA’s Mars Reconnaissance Orbiter. Image credit: NASA/JPL-Caltech/MSSS

And even the weather is cooperating.

“The active dust storm we saw south of Gale crater has now evolved into a harmless dust cloud. Basically, the poofed remnants of what was that dust storm. Mars is cooperating by providing good weather for landing,” said JPL’s Ashwin Vasavada, deputy project scientist for Curiosity.

“The team has done everything possible to make it a success. It is scary and risky. I am proud of the team,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing. “Risk exists.”

“The human spirit is driven by these kind of challenges. These challenges force us to explore our surroundings and understand what’s out there. And look at “Are we Alone?”

Watch NASA TV online for live coverage of the Curiosity landing on Aug. 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer


Image Caption: Curiosity Landing site at Gale Crater from ESA Mars Express Orbiter. Credits: ESA/DLR/FU Berlin (G. Neukum)

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Precisely on Course at T Minus 48 Hours till a ‘Priceless Asset’ Lands on Mars

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

When Will We Hear From Curiosity?

Just over a day from now the Mars Science Laboratory mission will arrive at Mars, its nine-month journey through space culminating in a harrowing “seven minutes of terror” that will place the Curiosity rover safely onto Mars’ surface within Gale crater. Although the world will be watching, there’s a chance that nobody will know exactly what happened to Curiosity for quite some time — even if everything goes perfectly.

This cool animation from NASA’s Jet Propulsion Laboratory shows why “simple” communication between two neighboring planets is still tricky business. (Hey, it’s not called rocket science for nothing!)

(Also check out “How Hard Is It to Land Curiosity on Mars?)

And if you want to be part of all the action as it unfolds tomorrow night/Monday morning, tune in to a live webcast on Google+ hosted by Universe Today’s Fraser Cain, CosmoQuest’s Dr. Pamela Gay, and Dr. Phil Plait — a.k.a. the “Bad Astronomer.” The webcast will feature interviews with special guests, a live video feed from NASA of the landing, and live coverage from JPL… don’t miss out! Find out more here.

Video: JPL News

Curiosity Precisely on Course at T Minus 48 Hours till a ‘Priceless Asset’ Lands on Mars

At this moment the mega rover Curiosity is barely 48 hours from Mars and transformation into a “priceless asset” on the Red Planet’s surface where she’ll initiate the search for evidence for habitats of Martian microbial life – past or present.

NASA JPL engineers have guided the Curiosity Mars Science Lab (MSL) so precisely on her 352-million-mile (567-million-kilometer) interplanetary journey through space that they decided to cancel today’s planned course adjusting thruster firing, known as Trajectory Correction Maneuver 5 (TCM-5). If needed, they have one last chance for a course correction burn (TCM-6) this weekend on Sunday.

“We are now about 1000 yards from the entry target that will bring us to the touchdown point on the North side of Gale Crater,” said Tomas Martin-Mur, MSL Navigation team chief of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., at an Aug. 2 MSL news briefing.

Curiosity is now less than 450,000 miles away from Mars, careening through space at over 8000 MPH (3576 m/s) and accelerating moment by moment due to the ever increasing pull of Mars gravity.

To put that in perspective, that’s less than twice the distance from the Earth to the Moon.

By the time Curiosity hits the Martian atmosphere on Sunday night/Monday early morning (Aug 5/6) she’ll be blazing through space at more than 13,200 MPH (5,900 m/s).

“I’m less than 500,000 miles from Mars & the Red Planet looks about the size as a full moon seen from Earth. 2 days to landing!” Curiosity tweeted a short while ago.

She remains healthy, with all systems operating nominally. And she is brave!

Curiosity will not flinch knowing she must endure the “7 Minutes of Terror” and the fiery entry,descent and landing to touchdown inside the 96 mile wide Gale Crater just 2 days from now.

Watch the harrowing landing animation – here.


Image Caption: Gale Crater Landing site for Curiosity. Credit: NASA

Absolutely staggering photos and science discoveries are expected from Curiosity – the boldest, most daring and by far the most scientifically complex and capable robotic emissary ever dispatched by humans to another world.

But after landing, the team needs to first test the rover’s components and unfurl the robots camera mast and instruments.

“We must recognize that on Sunday night at 10:32 PM PST(1:32 AM EST, 532 GMT) we will have a ‘priceless asset’ that we placed on the surface of another planet that could last for a long time IF we operate it correctly,” said Pete Theisinger, MSL project manager, JPL, at the Aug. 2 news briefing.

“So we will be cautious as hell about what we do with it !”

“This is a very complicated beast, so we all need to exercise caution. It’s much, much more complicated than Spirit and Opportunity in terms of the interactions amongst the various pieces and the things we need to keep track of in order to operate it successfully.”

A few hours after touchdown, Curiosity will send back the first images from the Gale crater landing site beside a towering 3 mile (5 km) high layered Martian mountain, named Mount Sharp.

“We will start doing science right away. Very roughly, the contact science will begin in 2 to 4 weeks. Sampling science will begin 1 to 2 months after we land,” explained Theisinger.

The car-sized Curiosity is 10 feet (3 meters) long and packed with 10 state-of-the-art science experiments that will search for organic molecules – the building blocks of life – and clay minerals, potential markers for signs of Martian microbial life and habitable zones.


Image Caption:Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer


Image Caption: MSL entry track to Gale Crater. Credit: NASA

Read continuing recent features about Curiosity by Ken Kremer starting here:

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor


Video Caption: This 11-minute animation depicts key events of how NASA’s Mars Science Laboratory mission will land the huge rover Curiosity on Mars on August 5/6, 2012. Credit: NASA

Well, here we are 3 days from the thrilling ‘touchdown’ of Curiosity on Mars on the boldest mission yet by humans to the Red Planet – Seeking Signs of Life beyond Earth!

The Curiosity Mars Science Lab rover is by far the hardest and most complex robotic mission that NASA has ever attempted. She marks a quantum leap beyond anything tried before in terms of the technology required to land this 2000 pound beast and the science she’ll carry out for a minimum 2 year prime mission.

So watch this harrowing video (above) – Outlining how Curiosity slams into the Martian atmosphere at 13200 MPH and comes to rest at 0 MPH after surviving the “7 Minutes of Terror” with an unprecedented guided entry, rocket powered descent, neck snapping supersonic parachute deployment and never before used Sky Crane maneuver – and be sure you’re safely seated !

The car-sized Curiosity has entered the final 72 hours of careening towards a crater floor on Mars.

After the nail biting entry, descent and landing (EDL), the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

“It looks a little crazy !” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL , at today’s (Aug. 2) pre-landing briefing for reporters at NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif. “But it’s the least crazy compared to other methods we evaluated.”

“Everything looks good for Sunday night. Over 300 Years of human individual contributions went into the MSL EDL system. We pull 10 Earth G’s or more of acceleration during first contact with the Martian atmosphere.”

See the detailed EDL graphic below –
Image caption: Entry, Descent and Landing (EDL) Timeline – click to enlarge for full image. Credit: NASA

Curiosity is the first mobile soil and rock sampling and chemistry lab dispatched to Mars. It’s also the first astrobiology mission to Mars since the twin Viking missions of the 1970’s.

“We are about to land a small compact car on Mars with a trunk load of instruments. It’s an amazing feat, exciting and daring. It’s fantastic,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing.

“It’s an extreme pleasure to be here. MSL has a huge reach, to the past, the future and around the world. Since the heatshield is nearly the size of the Orion heat shield, we’ll also learn an enormous amount about how we’ll land humans on Mars.”

“MSL is a workhorse for the future,” McCuistion emphasized.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state-of-the-art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

It’s 4 Days to Mars – and NASA’s Curiosity Mars Science Lab (MSL) spacecraft is now flying under the control of the crafts autonomous entry, descent and landing timeline and picking up speed as she plunges ever faster to the Red Planet and her Rendezvous with Destiny.

“Timeline activated. Bleep-bop. I’m running entry, descent & landing flight software all on my own. Countdown to Mars: 5 days,” Curiosity tweeted Tuesday night.

See below an EDL explanatory infographic timeline outlining the critical sequence of events which must unfold perfectly for Curiosity to safely survive the “7 Minutes of Terror” set to begin on the evening of August 5/6.

Aug. 1 TV Viewing Alert – 11:30 PM EDT – see NASA Science Chief John Grunsfeld tonight (Wed, Aug. 1) on the Colbert Report


Image Caption: Curiosity EDL infographic – – click to enlarge

And the excitement is building rapidly for NASA’s biggest, boldest mission ever to the Red Planet as the flight team continues to monitor Curiosity’s onboard systems and flight trajectory. Yesterday, the flight team successfully carried out a memory test on the software for the mechanical assembly that controls MSL’s descent motor, configured the spacecraft for its transition to entry, descent and landing approach mode, and they enabled the spacecraft’s hardware pyrotechnic devices.

Curiosity remains healthy and on course. If fine tuning for the targeted landing ellipse is needed, the next chance to fire on board thrusters to adjust the trajectory is Friday, Aug. 3.

The 4th of 6 possible Trajectory Correction Maneuver (TCM) firings was just accomplished on Sunday, July 29 – details here.

The car sized Curiosity rover is scheduled to touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) inside Gale Crater and next to a 3 mile (5 km) mountain taller that the tallest in the US.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

Image Caption: Course correcting thruster firings on July 29 successfully placed Curiosity on target to touchdown beside Mount Sharp inside Gale Crater on Mars on Aug 6 in search of signs of a habitable environment. Credit: NASA

Now just 1 week out from landing beside a 3 mile high (5 km) layered Martian mountain in search of life’s ingredients, aiming thrusters aboard the cruise stage of NASA’s car sized Curiosity Mars Science Lab successfully fired to set the rover precisely on course for a touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Two precise and brief thruster bursts lasting about 7 seconds were successfully carried out just hours ago earlier today at 1 a.m. on July 29, EDT (10 p.m. PDT on July 28). The effect was to change the spacecraft’s velocity by about 1/40 MPH or 1 cm/sec as it smashes into Mars at about 13,200 mph (5,900 meters per second).

This was the fourth and possibly last of 6 interplanetary Trajectory Correction Manuevers (TCM’s) planned by mission engineers to steer Curiosity since departing Earth for the Red Planet.

If necessary, 2 additional TCM’s could be implemented in the final 48 hours next Saturday and Sunday before Curiosity begins plunging into the Martian atmosphere late Sunday night on a do or die mission to land inside the 100 mile wide Gale Crater with a huge mountain in the middle. All 6 TCM maneuvers were preplanned long before the Nov 26, 2011 liftoff from Cape Canaveral, Florida.

Without this course correction firing, MSL would have hit a point at the top of the Martian atmosphere about 13 miles (21 kilometers) east of the target entry point. During the preprogrammed Entry, Descent and Landing (EDL) sequence the vehicle can steer itself in the upper atmosphere to correct for an error amounting to a few miles.

On landing day, MSL can steer enough during its flight through the upper atmosphere to correct for missing the target entry aim point by a few miles and still land on the intended patch of Mars real estate. The mission’s engineers and managers rated the projected 13-mile miss big enough to warrant a correction maneuver.

“The purpose of this maneuver is to move the point at which Curiosity enters the atmosphere by about 13 miles,” said Tomas Martin-Mur of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., chief of the mission’s navigation team. “The first look at telemetry and tracking data afterwards indicates the maneuver succeeded as planned.”


Image Cation: Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

As of today (July 30), Curiosity has traveled about 97% of the overall journey to Mars or about 343 million miles (555 million kilometers) of its 352-million-mile (567-million-kilometer) total flight distance.

“I will not be surprised if this was our last trajectory correction maneuver,” Martin Mur said of the TCM-4 firing. “We will be monitoring the trajectory using the antennas of the Deep Space Network to be sure Curiosity is staying on the right path for a successful entry, descent and landing.”

Curiosity will use an unprecedented rocket powered descent stage and a helicopter like sky crane to set down astride the sedimentary layers of Mount Sharp.

She will then conduct a minimum 2 year prime mission with the most sophisticated science instrument package ever dispatched to Mars to determine if a habitable zone ever existed on this region of Mars.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

As Curiosity dives down to Mars surface on Aug. 6, 3 spacecraft from NASA and ESA are now positioned in orbit around the Red Planet and are ready to relay and record signals from the “7 Minutes of Terror” – Read the details in my article – here

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

NASA Making Strides with the New Space Launch System

In 2011, America lost the ability to send humans into space when NASA retired the shuttle program.   Lately, there has been a burst of news about the commercial side of spaceflight and how private companies such as SpaceX and VirginGalatic will soon be able to take over where the shuttle left off.  But that doesn’t mean NASA has given up the ability to send people into space forever and recently the agency has taken a few steps toward regaining that ability.

The Space Launch System (SLS) is NASA’s new platform for launching both humans and cargo into Earth orbit and beyond.  With an eventual expected payload capacity of 130 metric tons it will theoretically be the most powerful rocket ever built.  On July 25th, it hit a major milestone when it was officially upgraded by an independent review board from the “concept development“ phase of the project to the “preliminary design“ phase.

“The in-depth assessment confirm the basic vehicle concepts of the SLS, allowing the team to move forward and start more detailed engineering design.“ William Gerstenmaier of NASA’s Human Exploration and Operations Mission Directorate said.  This puts the system on the path to the next milestone: the preliminary design review expected late next year.

That design review will cover a system that will likely be comprised of two five-stage rocket boosters like those that were used on the space shuttle.  Since those boosters were only capable of achieving low-Earth orbit, NASA needed to add some extra power to the SLS in order to reach deep space where many of its missions will take place.  Their solution is what is known as an “advanced booster“, essentially a late-stage chemical rocket that will fire well into in the ascent of the craft and carry it out of Earth’s gravity well.

The design process of the advanced boosters hit its own milestone on July 13th when NASA announced it had selected the proposals it will use to begin contract negotiations for the development of the system.  This is the first step of NASA’s procurement process, with a possible total contract of $200 million spread between the companies that receive finalized contracts. Those companies will likely come from the pool of those selected in this first step.  They include, Aerojet General Corp, ATK Launch Systems Inc, Northrop Grumman Systems Corporation – Aerospace Systems and Dynetics, Inc.   Dynetics, based out of Huntsville, Alabama, came out the winner for this round of the contract competition, with three of its proposals moved on to the contract negotiation phase while ATK, Aerojet and Northrop had one each.  The names of the proposals are:

–        “Subscale Composite Tank Set“ – Northrop Grumman

–        “F-1 Engine Risk Reduction Task“ – Aerojet General Corp

–        “F-1 Engine Risk Reduction Task“ – Dynetics Inc.

–        “Main Propulsion System Risk Reduction Task“ – Dynetics Inc.

–        “Structures Risk Reduction Task“ – Dynetics Inc.

–        “Integrated Booster Static Test“ – ATK Launch Systems Inc.

The next step of the process will require the awardees to come up with engineering demonstrations and risk reduction concepts for their proposals.  Over a 30-month period, the companies will have to demonstrate their technology prior to completion of the competition for contracts in 2015.  Engineers at NASA will then have some time to integrate the advanced booster system with the other SLS modules before the first test launch of the entire system in 2017.  While NASA might not be able to take humans to the stars for the next few years, they are making strides towards that goal.

 

Lead image caption: Components of the Space Launch System, highlighting the advanced boosters. Credit: NASA