35 Years Ago: Our First Family Portrait of the Earth and Moon

A crescent Earth and Moon as seen by Voyager 1 on September 18, 1977 (NASA)

35 years ago today, September 18, 1977, NASA’s Voyager 1 spacecraft turned its camera homeward just about two weeks after its launch, capturing the image above from a distance of 7.25 million miles (11.66 million km). It was the first time an image of its kind had ever been taken, showing the entire Earth and Moon together in a single frame, crescent-lit partners in space.

The view of Earth shows eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was actually positioned directly above Mt. Everest when the images were taken (the final color image was made from three separate images taken through color filters.)

The Moon was brightened in the original NASA images by a factor of three, simply because Earth is so much brighter that it would have been overexposed in the images were they set to expose for the Moon. (Also I extended the sides of the image a bit above to fit better within a square format.)

Read the latest on Voyager 1: Winds of Change at the Edge of the Solar System

Previous images may have shown the Earth and Moon together, but they were taken from orbit around one or the other and as a result didn’t have both worlds fully — and in color! — within a single frame like this one does. In fact, it was only 11 years earlier that the very first image of Earth from the Moon was taken, acquired by NASA’s Lunar Orbiter I spacecraft on August 23, 1966.

It’s amazing to think what was happening in the world when Voyager took that image:
• World population was 4.23 billion (currently estimated to be 7.04 billion)
• The Space Shuttle Enterprise made its first test flight from a 747
• Star Wars, Close Encounters of the Third Kind and Saturday Night Fever were out in U.S. theaters
• Charlie Chaplin and Elvis Presley died
• U.S. federal debt was “only” $706 billion (now over $16 trillion!)
• And, of course, both Voyagers launched on their Grand Tour of the Solar System, ultimately becoming the most distant manmade objects in existence
(See more world stats and events here.)

Image: NASA/JPL

“Once a photograph of the Earth, taken from outside, is available – once the sheer isolation of the Earth becomes known – a new idea as powerful as any in history will be let loose.”
– Sir Fred Hoyle

NASA Probes Play the Music of Earth’s Magnetosphere

Launched on August 30, 2012, NASA’s twin Radiation Belt Storm Probe (RBSP) satellites have captured recordings of audible-range radio waves emitted by Earth’s magnetosphere. The stream of chirps and whistles heard in the video above consist of 5 separate occurrences captured on September 5 by RBSP’s Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument.

The events are presented as a single continuous recording, assembled by the (EMFISIS) team at the University of Iowa and NASA’s Goddard Space Flight Center.

Called a “chorus”, this phenomenon has been known for quite some time.

“People have known about chorus for decades,” says EMFISIS principal investigator Craig Kletzing of the University of Iowa. “Radio receivers are used to pick it up, and it sounds a lot like birds chirping. It was often more easily picked up in the mornings, which along with the chirping sound is why it’s sometimes referred to as ‘dawn chorus.’”

The radio waves, which are at frequencies that are audible to the human ear, are emitted by energetic particles within Earth’s magnetosphere, which in turn affects (and is affected by) the radiation belts.

The RBSP mission placed a pair of identical satellites into eccentric orbits that will take them from as low as 375 miles (603 km) to as far out as 20,000 miles (32,186 km). During their orbits the satellites will pass through both the stable inner and more variable outer Van Allen belts, one trailing the other. Along the way they’ll investigate the many particles that make up the belts and identify what sort of activity occurs in isolated locations — as well as across larger areas.

Read: New Satellites Will Tighten Knowledge of Earth’s Radiation Belts

Audio Credit: University of Iowa. Visualisation Credit: NASA/Goddard Space Flight Center. (H/T to Peter Sinclair at climatecrocks.com.)

Manhattan-Sized Ice Island Heads Out to Sea

An “ice island” that calved from the Petermann Glacier in July is seen by NASA satellite (MODIS/Terra)

Remember that enormous slab of ice that broke off Greenland’s Petermann Glacier back in July? It’s now on its way out to sea, a little bit smaller than it was a couple of months ago — but not much. At around 10 miles long and 4.6 miles across (16.25 x 7.5 km) this ice island is actually a bit shorter than Manhattan, but is fully twice as wide.

The image above was acquired on September 14 by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite.

Although the calving of this particular ice island isn’t thought to be a direct result of increasing global temperatures, climate change is thought to be a major factor in this year’s drop in Arctic sea ice extent, which is now below 4.00 million square kilometers (1.54 million square miles). Compared to September conditions in the 1980s and 1990s, this represents a 45% reduction in the area of the Arctic covered by sea ice.

Arctic sea ice extent data for June-July 2012 (NSIDC)

This year sea ice in the Arctic Ocean dropped below the previous all-time record, set in 2007. 2012 also marks the first time that there has been less than 4 million square kilometers (1.54 million square miles) of sea ice since satellite observations began in 1979.

The animation below, released today by the NOAA, shows the 2012 time-series of ice extent using data from the DMSP SSMI/S satellite sensor:

Read more here.

Shuttle Endeavour mated to Jumbo Jet for Final Flight

Image caption: Endeavour mated to Boeing 747 in the Mate-Demate device at the Kennedy Space Center Shuttle Landing Facility on Sept. 14 for Final Ferry Flight to California on Sep. 17. Credit: Ken Kremer

Space Shuttle Endeavour was joined to the 747 Jumbo carrier jet that will carry her majestically on Sept 17 on her final flight to the California Science Center – her permanent new home at the in Los Angeles. Enjoy my photos from onsite at the Kennedy Space Center in Florida.

On Friday (Sept. 14), Endeavour was towed a few miles in the predawn darkness from the Vehicle Assembly Building (VAB ) to the Shuttle Landing Facility (SLF) and the specially modified 747 known as the Shuttle Carrier Aircraft, or SCA.

In a day long process, Endeavour departed the VAB at 5:04 a.m. and was hauled into the gantry-like Mate-Demate device, hoisted and then lowered onto the awaiting 747 Jumbo Jet. The pair were joined at about 2:41 p.m.

Image caption: Endeavour towed past waiting Boeing 747 Shuttle Carrier Aircraft (SCA) at the Kennedy Space Center Shuttle Landing Facility on Sept. 14 for Final Ferry Flight to California on Sep. 17. Credit: Ken Kremer

Final work to hard mate NASA’s youngest orbiter to the SCA Jumbo Jet known as NASA 905 is due to be completed by Sunday.

The 747 crew will fly perform multiple, crowd pleasing low flyovers of the Florida space coast region, the KSC Visitor complex and the beaches – giving every spectator a thrilling front row seat to this exciting but bittersweet moment in space history as the shuttle takes flight for the very final time.

Image caption: Endeavour towed out of the Vehicle Assembly Building on the way to the Kennedy Space Center Shuttle Landing Facility on Sept. 14 for Final Ferry Flight to California on Sep. 17. Venus shines to the left. Credit: Ken Kremer – www.kenkremer.com

Everyone involved felt a strong mix of emotions from pride in the tremendous accomplishments of NASA’s Space Shuttle Program to the sad and bittersweet feeling that comes with the retirement of all 3 orbiters barely one third of the way into their design lifetime. All three shuttles could easily have flown tens of millions more miles but for lack of money and political support from Washington D.C.

Image caption: Endeavour mated on top of NASA SCA at Shuttle Landing Facility on Sept. 14 for Final Ferry Flight to California on Sep. 17. Credit: Ken Kremer

Altogether Endeavour flew 25 missions and traveled 122,883,151 miles during 299 days in space.

Ken Kremer

Image caption: Endeavour gently lowered on top of NASA SCA with Ken Kremer on hand at the Kennedy Space Center Shuttle Landing Facility on Sept. 14 for Final Ferry Flight to California on Sep. 17. Credit: Ken Kremer

Editor’s note: Visit John O’Connor’s NASATech website for panoramic views of Endeavour’s mating:
http://nasatech.net/EndeavourMDM3_120914/

http://nasatech.net/EndeavourMDM4_120914/

http://nasatech.net/EndeavourMDM5_120914/

Farewell to a Hero: Photos From Armstrong’s Burial at Sea

Armstrong’s burial service aboard the USS Philippine Sea on September 14, 2012 (NASA/Bill Ingalls)

Earlier today, Friday, September 14, 2012, Neil A. Armstrong’s burial at sea service was held aboard the USS Philippine Sea (CG 58) in the Atlantic Ocean. Armstrong, the first man to walk on the moon during the 1969 Apollo 11 mission, died Saturday, August 25. He was 82.

An icon of exploration for all of humanity, he will be missed by millions and remembered forever. Godspeed, sir, and thank you.

See more photos below.

US Navy personnel carry the cremated remains of Apollo 11 astronaut Neil Armstrong

Members of the US Navy ceremonial guard hold an American flag over Armstrong’s remains

A US Navy firing squad fires three volleys in honor of Neil Armstrong

US Navy Lieutenant Commander Paul Nagy and Carol Armstrong, wife of Neil Armstrong, commit the remains of Neil Armstrong to the sea

US Navy Captain Steve Shinego presents the US flag to Carol Armstrong as Neil’s son, Eric “Rick” Armstrong, looks on.

All photos credit NASA/Bill Ingalls.

See more photos from the service on the Flickr set here.

Neil Alden Armstrong, 1930 – 2012.

Sonic-Powered Levitation Allows for Zero-G Drug Research

It’s not special effects: researchers at the U.S. Department of Energy’s Argonne National Laboratory in Illinois have developed a way to cancel out the effects of gravity, allowing liquids to be held without containers. The effect is created using sound waves emitted by an acoustic levitator — an instrument designed by NASA for simulating microgravity.

Watch the video. It’s the coolest thing you’ll see all week.

This accomplishes more than just a neat effect; by keeping liquids in place without the need for a physical container, pharmaceutical research can be performed while the drugs are still in their purest, “amorphous” state.

“Most drugs on the market are crystalline – they don’t get fully absorbed by the body and thus we aren’t getting the most efficient use out of them,” said Yash Vaishnav, Argonne Senior Manager for Intellectual Property Development and Commercialization.

When solutions come in contact with the interior surfaces of their containers, evaporation takes place, which can lead to crystallization. In order to find a way to hold liquids without anything coming in contact with them (a tricky task while under the effect of Earth’s pesky gravity) ANL X-ray physicist Chris Benmore looked to NASA’s acoustic levitator.

Using two sets of sound waves emitted at 22khz and precisely aimed at each other, a “standing wave” is established at their center. The resulting acoustic force is strong enough to counter the downward tug of gravity at certain points (at least as far as droplets of liquid are concerned.)

The liquid drugs can then be studied without the problem of crystallization, making this technological parlor trick a powerful analytical tool for pharmaceutical researchers. The ultimate goal is to learn how to reduce the amount of a particular drug but still retain the desired effects — with less of the undesired ones.

Read more here on the Argonne National Lab site.

The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’sOffice of Science.

Say Ahhh to Mars

Take a deep breath because this new panorama from Mars enthusiast Stu Atkinson will take it away.

“Anyway, a whole bunch of these came down, like I said, and to my delight they all linked up to form a big, biiiiiiiig panoramic mosaic,” said Stu on his blog “The Gale Gazette.” “And here it is. Obviously you’ll need to click on it to enlarge it… and I’ll warn you, it’s a big image, you can kiss the next few minutes goodbye because you’ll be panning around it for a while…”

Zoom in and you can see actual rocks. Click that little button at the right of the toolbar and Mars will take over your screen.

So far, Curiosity has rolled across a barely dusty plain in Gale Crater. Here’s a look of things to come. In black-and-white image from Curiosity, there appear to be big dunes to cross to get to the foothills of Aeolis Mons, or Mount Sharp.

A black-and-white but still breathtaking view of the dusty terrain between Curiosity’s current location and the foothills of Aeolis Mons, or Mount Sharp. Credit: NASA/JPL/Stu Atkinson

Curiosity has nearly finished robotic arm tests. Once complete, the rover will be able to touch and examine its first Mars rock.

“We’re about to drive some more and try to find the right rock to begin doing contact science with the arm,” said Jennifer Trosper, Curiosity mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif, in a press release.

This image from NASA’s Curiosity rover shows the open inlet where powered rock and soil samples will be funneled down for analysis. It was taken by the Mars Hand Lens Imager (MAHLI) on Curiosity’s 36th Martian day, or sol, of operations on Mars (Sept. 11, 2012). MAHLI was about 8 inches (20 centimeters) away from the mouth of the Chemistry and Mineralogy (CheMin) instrument when it took the picture. The entrance of the funnel is about 1.4 inches (3.5 centimeters) in diameter. The mesh screen is about 2.3 inches (5.9 centimeters) deep. The mesh size is 0.04 inches (1 millimeter). Once the samples have gone down the funnel, CheMin will be shooting X-rays at the samples to identify and quantify the minerals.

Engineers and scientists use images like these to check out Curiosity’s instruments. This image is a composite of eight MAHLI pictures acquired at different focus positions and merged onboard the instrument before transmission to Earth; this is the first time the MAHLI performed this technique since arriving at Curiosity’s field site inside Gale Crater. The image also shows angular and rounded pebbles and sand that were deposited on the rover deck during landing on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT).

Two science instruments, a camera called Mars Hand Lens Imager, or MAHLI, that can take close-up color images and a tool called Alpha Particle X-ray Spectrometer (APXS) that can determine the elemental composition of a rock, also have passed tests. The instruments are mounted on a turret at the end of the robotic arm and can be placed in contact with target rocks. The adjustable focus MAHLI camera produced images this week of objects near and far; of the underbelly of Curiosity, across inlet ports and a penny that serves as a calibration target on the rover.

This close-up image shows tiny grains of Martian sand that settled on the penny that serves as a calibration target on NASA’s Curiosity rover. The larger grain under Abraham Lincoln’s ear is about 0.2 millimeters across. The grains are classified as fine to very fine sand.

The Mars Hand Lens Imagery (MAHLI) on the Curiosity rover taken by the Mast Camera on the 32nd Martian day, or sol, of operations on the surface. Engineers imaged MAHLI to inspect the dust cover and to ensure that the tool’s LED lights are functional. Scientists enhanced the image to show the scene as it would appear under Earth’s lighting conditions. This helps in analyzing the background terrain.

Check out more images from the Mars Science Laboratory teleconference.

Image credit: NASA/JPL-Caltech/MSSS

Endeavour’s Cross-Country Final Piggyback Ride Arrives at Kennedy

SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

The clock is rapidly ticking down on the final days of the Kennedy Space Center (KSC) as the proud home of NASA’s Space Shuttle Endeavour.

On Tuesday, Sept. 11, the modified 747 Jumbo Jet that will ferry shuttle Endeavour piggy-back style cross-country to her new eternal home in California arrived at KSC.

The Shuttle Carrier Aircraft, or SCA, touched down at the shuttle landing strip at KSC at about 5:05 p.m. EDT. See the gallery of approach and landing photos.

Image Caption: SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

SCA Arrival Photo. Credit: Ken Kremer

The 747 landing marks the start of the process that culminates soon with the final airborne flight of the orbiter in the history of NASA’s Space Shuttle Program.

On Friday, Sept. 14 Endeavour will be hauled out of the iconic Vehicle Assembly Building (VAB) for the final time and moved to the Shuttle Landing Facility where she will be hoisted and mated onto the back of the jumbo jet, designated NASA 905.

SCA Arrival Photo. Credit: Jeff Seibert/wiredforspace


SCA Arrival Photo. Credit: Jeff Seibert/wiredforspace

The mated pair are due to take off at first light on Monday, Sept.17 weather permitting on a multi day trip across America before landing in California.

The 747 crew will fly perform multiple, crowd pleasing and low flyovers of the space coast area, the KSC Visitor complex and the beaches – which will give every spectator a thrilling front row seat to this thrilling and bittersweet moment in space history as the shuttle takes flight for the very final time.

Watch for my upcoming tour report taking you inside the SCA Jumbo Jet.

And I will be on-site at KSC providing on-site Endeavour departure coverage for Universe Today readers through the dramatic takeoff on Sept 17.

Ken Kremer

………

SCA Arrival Photos Credit: Klaus Krueger

50 Years Ago Today, We Chose to Go to the Moon

“We set sail on this new sea because there is new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people.”
– John F. Kennedy, September 12, 1962

On this day, 50 years ago, on a warm, sunny morning in Houston, Texas, President John F. Kennedy delivered a now-famous speech to 40,000 spectators at Rice University, a speech that supported the United States’s commitment to step beyond the boundaries of our world, to go beyond low-Earth orbit and eventually, successfully (and indeed before the decade was out!) land men on the Moon and return them safely to Earth.

It was an inspiring speech, both for the nation’s newly-developed space industry as well as for the entire country. (Would that we saw more overt dedication to space exploration from our leaders today!) This video from Rice University, itself celebrating its 100th anniversary in October, gives some insight into the events of that day in September of 1962, the small moments that led up to it and the large ones that followed.

From the Rice news release by Jade Boyd:

JFK’s 1962 moon speech still appeals 50 years later

Few moments in Rice’s history are as well known or oft remarked upon as the 1962 speech in which President John F. Kennedy boldly declared, “We choose to go to the moon!”

The speech marked a turning point for Rice, the city of Houston, the nation and the world. Globally, the space race played out against the backdrop of the Cold War, and in the U.S. the space program shared headlines with the Vietnam War and the struggle for civil rights. In Houston, NASA would pump more than $1 billion into the local economy in the 1960s and help the city blossom into the nation’s fourth-largest metropolis.

In a tribute to Apollo 11 astronaut Neil Armstrong this week, Rice alum Paul Burka ’63, executive editor of Texas Monthly magazine, published the verbatim text of Kennedy’s speech in his blog. Burka, who was at Rice Stadium that day, said the speech “speaks to the way Americans viewed the future in those days. It is a great speech, one that encapsulates all of recorded history and seeks to set it in the history of our own time. Unlike today’s politicians, Kennedy spoke to our best impulses as a nation, not our worst.”

Kennedy spoke at the stadium at 10 a.m. Sept. 12. It was a warm, sunny day, and fall classes were not yet under way. Rice’s incoming freshmen were on campus for orientation, but many of the estimated 40,000 spectators were Houston school children, said Rice Centennial Historian Melissa Kean.

Kennedy told the audience that the United States intended to take the lead in spaceflight, both to ensure that the Soviet Union did not base strategic weapons in space and because space exploration “is one of the great adventures of all time, and no nation which expects to be the leader of other nations can expect to stay behind in the race for space.”

The best-known line from the speech — “We choose to go to the moon!” — earned a thunderous ovation, in part because of Kennedy’s clever oratory. He played to the hometown crowd with the preceding line, “Why does Rice play Texas?” — a line that Kennedy jotted between the lines of the typed copy prepared by White House aide Ted Sorensen.

In its front-page coverage of the speech, the Rice Thresher made note of this line and others. The paper reported that the speech capped a two-day visit to Houston in which Kennedy toured facilities at the Manned Spacecraft Center (now Johnson Space Center), and the Thresher referred to the costly nature of the space program by citing the $5.4 billion annual NASA budget, a figure Kennedy also used in the speech.

The number impressed chemist Robert Curl ’54, one of many faculty members at the stadium.

“I came away in wonder that he was seriously proposing this,” said Curl, Rice’s Pitzer-Schlumberger Professor Emeritus of Natural Sciences and professor emeritus of chemistry. “It seemed like an enormous amount of money to spend on an exploration program. It was an impressive amount of money back then, and if you adjust for inflation, the Apollo program cost more than the LHC today.”

Curl said Kennedy’s vision paid off for NASA and Houston when Apollo 11 landed on the moon less than eight years later.

Another Rice faculty member in attendance was Ron Sass, fellow in global climate change at Rice’s Baker Institute for Public Policy and the Harry C. and Olga K. Wiess Professor Emeritus of Natural Sciences.

Sass and Curl each said Kennedy’s speech seemed no more remarkable at the time than the 1960 speech by President Eisenhower at Autry Court. Today, Eisenhower’s speech is largely forgotten, and Kennedy’s is still frequently cited in the news.

Sass said part of the enduring appeal of Kennedy’s speech is the magnitude of what he proposed, something Sass said he has come to appreciate more with age.

“It didn’t seem outlandish to me at the time,” Sass said. “I was young, and I thought you could do just about anything.”

“If this capsule history of our progress teaches us anything, it is that man, in his quest for knowledge and progress, is determined and cannot be deterred. The exploration of space will go ahead, whether we join in it or not, and it is one of the great adventures of all time, and no nation which expects to be the leader of other nations can expect to stay behind in the race for space.”
– President John F. Kennedy

For a full transcript of JFK’s speech, click here.

Video and inset image: Rice University. Apollo 11 liftoff: NASA

STEREO Spots a CME Soaring Into Space

Press “play.” Say “wow.”

The enormous eruption of a solar prominence and resulting coronal mass ejection (CME) back on August 31 that was captured in amazing HD by NASA’s Solar Dynamics Observatory was also spotted by the Sun-flanking STEREO-B spacecraft, which observed the gigantic gout of solar material soaring away from the Sun.

This video shows the eruption as it passes across the fields of view of several of STEREO-B’s cameras over the course of 48 hours.

According to NASA’s Goddard Space Flight Center, “while CMEs are routinely seen in the Heliographic Imager (HI) telescopes, it’s very rare for prominences to stay visible for so long. The HI1 field of view ranges from 4 to 24 degrees away from the Sun. To get a sense of scale, we know the Sun is roughly 860,000 miles wide — and look how far the prominence holds together. And this CME is so bright it initially saturates the COR1 telescope.”

The bright spot in the red (COR2) field of view is the planet Venus.

Coronal mass ejections are huge bubbles of gas bounded by magnetic field lines that are ejected from the Sun over the course of several minutes — sometimes even hours. If they are directed toward Earth, the cloud of charged solar particles can interact with our magnetosphere and cause anything from increased auroral activity to radio interference to failure of sensitive electromagnetic equipment.

Particularly long filaments like the one that caused the August 31 CME have been known to collapse with explosive results when they hit the stellar surface.

The CME did not travel directly toward Earth but did connect with Earth’s magnetosphere with a glancing blow, causing bright aurorae to appear around the upper latitudes on the night of September 3.

Image: NASA/STEREO/GSFC