Antares Picture Perfect Blastoff Launches Commercial Space Race

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)
Story updated[/caption]

WALLOPS ISLAND, VA – The new ‘Commercial Space Era’ received a resounding boost today when a privately developed Antares rocket lofting the first ever Cygnus commercial cargo resupply craft thundered to space from America’s newest launch pad at NASA Wallops along the Eastern Shore of Virginia.

The history making launch marks the first time that a spacecraft launched from Virginia is blazing a path to the International Space Station (ISS) – thereby scoring a milestone achievement to keep the orbiting lab complex stocked up with supplies and science experiments from American soil. This is the maiden flight of Cygnus.

Move over SpaceX ! Your space competition from Orbital Sciences has arrived!

It was a ‘picture perfect’ blastoff for the two stage Antares booster at 10:58 a.m. EDT this morning (Sept. 18) from the commercial Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.

The blastoff of Antares was stunningly beautiful with intensely bright flames spewing from the rockets rear. And the incredibly loud roar of the first stage engines reverberated widely and wowed hoards of spectators gathered throughout the local viewing area in Chincoteague, Va. – and woke late sleepers some folks told me later today!

The rumbling thunder of Antares sounded as loud as a space shuttle.

Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA.  Credit: Ken Kremer (kenkremer.com)
Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA. LADEE Moon shot launch pad at right. Credit: Ken Kremer (kenkremer.com)

Antares and Cygnus were built by Orbital Sciences Corporation and its team of industrial partners using seed money from NASA’s COTS commercial transportation initiative aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS.

America lost 100% of its capability to send humans and cargo to the ISS when NASA’s space shuttles were retired in 2011. Orbital Sciences and their competitor SpaceX, were awarded NASA contracts to restore the unmanned cargo resupply capability.

Thales Alenia Space in Italy designed and constructed the 17 foot ( 5 meter) long Cygnus module under contract with Orbital.

“Thales Alenia has actually built 50% of the pressurized modules currently comprising the ISS,” said Luigi Quaglino, Thales Alenia Senior Vice President.

“This is a historic accomplishment for commercial spaceflight with the picture perfect launch of Antares and Cygnus headed for the space station,” said Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, at a post launch briefing for reporters at NASA Wallops.

In fact this was the heaviest cargo load ever delivered to the ISS by a commercial vehicle, said Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.

A revolutionary new day has dawned in space by opening up new pathways enabling space exploration And it’s not a moment too soon given the continuing significant reductions to NASA’s budget.

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer (kenkremer.com)
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

COTS was aimed at revolutionizing how we reach space by privatizing routine space operations that thereby allows NASA to focus more on exploration beyond low earth orbit, getting people back to the Moon and beyond to deep space destinations including Asteroids and Mars.

Today’s Antares launch is the culmination of the COTS contract that NASA awarded to Orbital back in 2008.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

“Today marks a milestone in our new era of exploration as we expand the capability for making cargo launches to the International Space Station from American shores,” said NASA Administrator Charles Bolden in a statement.

“Orbital’s extraordinary efforts are helping us fulfill the promise of American innovation to maintain our nation’s leadership in space.”

The Cygnus spacecraft is healthy and successfully unfurled its life giving solar panels starting 1.5 minutes after separation from the second stage that took place about 10 minutes after launch, said Culbertson.

Antares placed Cygnus into its intended orbit of about 180 x 160 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital said.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

Cygnus is traveling at 17,500 MPH and is on its way to rendezvous with the space station Sunday, Sept. 22. The cargo vessel will deliver about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the Expedition 37 crew.

The flight, known as Orb-D1 is a demonstration mission to prove that Cygnus can conduct a complex series of maneuvers in space safely bringing it to the vicinity of the ISS.

Mission controllers at Orbital will guide Cygnus to the vicinity of the ISS on Sept. 22.

Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT.  Credit: Ken Kremer (kenkremer.com)
Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT. Credit: Ken Kremer (kenkremer.com)

But its only after carrying out a series of 10 complicated maneuvering tests proving that the vehicle can safely and reliably approach the station up close that NASA and the ISS partners will grant permission to dock.

ISS astronauts Karen Nyberg (NASA) and Luca Parmitano (ESA) will then grapple Cygnus with the station’s Canadian built robotic arm and berth the capsule at an earth facing docking port on Sunday, Sept 22. will then grapple Cygnus with the station’s robotic arm and berth the capsule at an earth facing docking port.

NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Administrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)
NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Admisistrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs – originally built in the Soviet Union as NK-33 model engines for the Soviet era moon rocket.

The upper stage features an ATK Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO. The 2nd stage will be upgraded starting with the 4th Antares flight.

“Antares next flight is scheduled for December sometime between the 8th and 21st”, said Culbertson.

Ken Kremer
…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo  at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops.  Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Proof! – Frogs Jump at Chance to Board Rockets to Space from NASA Wallops during Antares booster Rollout

NASA Photographer discovers living proof that Frogs are leaping towards the on ramp for rocket ships bound for Earth orbit and beyond at NASA’s Wallops Island, VA, launch pads during rollout of the Antares rocket on Sept 13, 2013. Credit: Ken Kremer (kenkremer.com)

WALLOPS ISLAND, VA – Have you seen the NASA frog? The one that became famous worldwide last week following the historic Moon Shot of the LADEE mission from NASA Wallops Island in Virginia?

The one that the inexplicably appeared in a single photograph from a NASA Wallops remote camera when the pressure wave from the Minotaur rockets exhaust sent it hurtling skywards?

Perhaps you are an unbeliever? And think the frog photo was photoshopped?

Well after a thorough investigation, Universe Today has uncovered undeniable proof that NASA’s resident frogs are indeed jumping at the chance to make history again and leap aboard the next rocket headed to space from NASA Wallops on Sept 18.

How do I know this?

Well on Friday the 13th of September, I was on site at NASA Wallops for a photo shoot of the lengthy rollout of the Orbital Sciences Antares rocket to Launch Pad 0A – and the famous frog was a topic of endless conversation in between our gorgeous views of Antares moving along the road to the launch pad atop the Transporter Erector vehicle.

See my frog and rollout photo gallery herein.

Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)
Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)

Nary a frog was to be found anywhere all day and night along the 1 mile rollout route.

Finally, after much delay the Antares rocket was raised and erected firmly atop the launch mount.

And then at last the great frog discovery was made.

Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard.    Credit: Ken Kremer (kenkremer.com)
Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard. Credit: Ken Kremer (kenkremer.com)

And of course it took a woman, a NASA photographer named Jamie, to do a man’s job – finding and corralling that frog and fearlessly holding the critter in front of all the guys, including me.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

My photos are the proof that the mysterious origin of NASA’s apparently space loving resident frogs has been solved.

Jamie discovered the frog lurking inside a telescope dome used to protect NASA’s launch pad cameras during liftoff.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

She found the frog hiding inside the dome to evade the ever present security patrols on the lookout for intruders. Where is the NSA when you need them?

And quite clearly these are intelligent frogs – eager to blast off to the High Frontier in pursuit of science.

Why?

Because for the past few weeks these space loving frogs have been reading the new pair of signs installed by the launch pad gates right in front of the on ramps directing traffic to the Minotaur and Antares rockets headed to the Moon and the International Space Station.

They were just waiting for the right moment to hop aboard.

Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Everything remains on target for the Sept. 18 blastoff of Orbital Sciences Antares commercial rocket carrying the first fully functional Cygnus commercial resupply vehicle to orbit from NASA’s Wallops Island Facility on a demonstration mission bound for the International Space Station (ISS).

“The weather forecast remains at 75% chance of “GO” with favorable conditions,” said NASA Wallops test director Sarah Daugherty at a news media briefing at Wallops today.

“The launch could be widely visible along the East Coast from New York City to South Carolina.” – Weather permitting

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Learn how and where to view the Antares launch by reading my “How to see the Antares Launch” story.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Stay tuned to Universe Today for complete coverage of the Antares/Cygnus Orb-D1 mission to the ISS and my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)

A “Mini Jet” Juts from Saturn’s F Ring

A bright "mini-jet" spotted in Saturn's F ring

We all know that Saturn’s moon Enceladus has a whole arsenal of geysers jetting a constant spray of ice out into orbit (and if you didn’t know, learn about it here) but Enceladus isn’t the only place in the Saturnian system where jets can be found — there are some miniature versions hiding out in the thin F ring as well!

Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.
Watch the 50-mile-wide Prometheus dip into the F ring (CLICK TO PLAY) NASA/JPL/SSI. Animation by J. Major.

The image above, captured by the Cassini spacecraft on June 20, 2013, shows a segment of the thin, ropy F ring that encircles Saturn just beyond the A ring (visible at upper right). The bright barb near the center is what scientists call a mini jet, thought to be caused by small objects getting dragged through the ring material as a result of repeated passings by the shepherd moon Prometheus.

Coincidentally, it’s gravitational perturbations by Prometheus that help form the objects — half-mile-wide snowball-like clusters of icy ring particles — in the first place.

Unlike the dramatic jets on Enceladus, which are powered by tidal stresses that flex the moon’s crust, these mini jets are much more subtle and occur at the casual rate of 4 mph (2 meters/second)… about the speed of a brisk walk.

The reflective jets themselves can be anywhere from 25 to 112 miles (40 to 180 kilometers) long.

See more images of mini jets — also called “classic trails” — below:

Various images of mini jets captured by Cassini from 2005 to 2008.
Various images of mini jets captured by Cassini from 2005 to 2008.

Over 500 of these features have been imaged by Cassini since 2005. Read more about mini jets here.

(And don’t worry, Enceladus… these little jets are interesting but they have nothing on you!)

Source: Cassini Imaging Central Laboratory for OPerationS (CICLOPS)

Image credits: NASA/JPL-Caltech/SSI/QMUL. 

How to See the Historic Antares/Cygnus Launch to Space Station on Sept. 18

Top of the Rock - New York City. Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT - weather permitting - after blastoff from NASA Wallops, VA. Credit: Orbital Sciences See more Antares launch trajectory viewing graphics below

Top of the Rock – New York City
Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT – weather permitting – after blastoff from NASA Wallops, VA. Credit: Orbital Sciences
See more Antares launch trajectory viewing graphics below[/caption]

WALLOPS ISLAND, VA – “All Systems Are GO” for the Sept. 18 launch of Orbital Sciences Antares commercial rocket carrying the first ever fully functional Cygnus commercial resupply vehicle to orbit on the history making first flight blasting off from NASA’s Wallops Island Facility– along the eastern shore of Virginia and bound for the International Space Station (ISS).

Here’s our guide on “How to See the Antares/Cygnus Launch” – complete with viewing maps and trajectory graphics from a variety of prime viewing locations courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus spaceship aimed at keeping the ISS fully operational for science research.

And although the launch is slated for late morning it should still be visible to millions of spectators along a lengthy swath of the US East Coast from North Carolina to Connecticut – weather permitting – who may have never before witnessed such a mighty rocket launch.

The daylight liftoff of the powerful two stage Antares rocket is scheduled for Wednesday, Sept 18 at 10:50 a.m. EDT from Launch Pad 0A at the Mid-Atlantic Regional Spaceport at NASA Wallops Island, Virginia. The launch window extends 15 minutes to 11:05 a.m.

Up top is the view as anticipated from “The Top of the Rock” or Rockefeller Center in New York City. See below the extraordinary image of LADEE’s launch from “Top of the Rock” by Ben Cooper to compare the day and night time sighting delights.

In anticipation of liftoff, the Antares rocket was rolled out to Pad 0A on Friday morning Sept. 13 and I was on hand for the entire event – see my rollout photos here and upcoming.

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares.
Credit: Ken Kremer (kenkremer.com)

Here’s a hi res version of the viewing map courtesy of NASA Wallops Flight Facility:

Antares/Cygnus Launch - Hi Res Visibility map The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA.  will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station.  Credit: NASA Wallops Flight Facility
Antares/Cygnus Launch – Hi Res Visibility map
The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA. will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station. Credit: NASA Wallops Flight Facility

The Antares launch follows closely on the heels of the spectacularly bright Sept. 6 nighttime Moon shot blastoff of the Minotaur V rocket that successfully injected NASA’s LADEE lunar orbiter into its translunar trajectory.

And just as was the case with the Minotaur V and LADEE, you don’t have to be watching locally to join in and experience all the fun and excitement. As with any NASA launch, you can also follow along with up to the minute play by play by watching the NASA TV webcast online or on smartphones, iPods or laptops.

Atlantic City
Atlantic City

It’s hard to say exactly how long and how bright the rockets flames and exhaust trail will be visible since it depends on the constantly changing lighting, prevailing clouds and overall weather conditions.

But one thing is for sure. If you don’t go outside and watch you’re giving up a great opportunity.

And keep in mind that Antares will be moving significantly slower than the Minotaur V.

Herein are a series of graphics showing the Antares trajectory and what you should see during firings of both stages from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including Annapolis, the US Capitol, Lincoln Memorial, National Air and Space Museum, Atlantic City, NJ, New York City and more.

Capitol East-Front Steps
Capitol East-Front Steps
Goddard Space Flight Center - GSFC
Goddard Space Flight Center – GSFC
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

The goal of the mission is to demonstrate the safe and successful launch, rendezvous and docking of the privately developed Cygnus cargo carrier with the International Space Station (ISS) and delivery of 1300 pounds of essential supplies, food, clothing, spare parts and science gear to the six person resident human crews – currently Expedition 37.

Although it’s the 2nd launch of Antares following the maiden flight in April, this is the first flight of the Cygnus commercial delivery system. The demonstration and testing will be the same as what SpaceX accomplished in 2012 with their competing Falcon 9/Dragon architecture.

The mission is designated Orb-D1 and is funded with seed money by NASA’s COTS program to replace the cargo delivery duties of NASA’s now retired Space Shuttle orbiters.

Lincoln Memorial
Lincoln Memorial
Richmond
Richmond

For those who are traveling to witness the launch locally in the Chincoteague, Va., area, there will be two public viewing sites said Jeremy Eggers, NASA Wallops Public Affairs Officer in an interview with Universe Today.

“There will be are two local sites open to the public,” Eggers told me. “Folks can watch at either the NASA Wallops Flight facility Visitors Center (http://sites.wff.nasa.gov/wvc) or the beach at Assateague National Seashore (http://www.nps.gov/asis/index.htm).”

“There will be loudspeakers to follow the progress of the countdown, but no TV screens as done with the LADEE launch.”

National Air & Space Udvar-Hazy Museum
National Air & Space Udvar-Hazy Museum
Annapolis
Annapolis

So far the weather outlook is promising with a 75% chance of “GO” with favorable conditions at launch time.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Be sure to watch for my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Compare this actual launch view to the graphic calculated for Antares (above) as seen from the exact same location atop Rockefeller Center. Credit: Ben Cooper/Launchphotography.com

Best Custom Road Signs Ever at Wallops Island Launch Pad

Signs posted outside launch Pad-OA at the NASA Wallops Flight Facility. Credit: NASA/Bill Ingalls.

These custom road signs at NASA’s Wallops Flight Facility are, well, out of this world with awesomeness. They refer to the recent launch of the LADEE spacecraft to the Moon and the upcoming launch this week of the Orbital Sciences Corporation Antares rocket, with its Cygnus cargo spacecraft heading to the International Space Station for a demonstration cargo resupply mission. Launch is currently scheduled for Wednesday, September 18 during a window of 10:50-11:05 am EDT (14:50-15:05 UTC).

Curiosity Rolls into Intriguing ‘Darwin’ at ‘Waypoint 1’ on Long Trek to Mount Sharp

Curiosity’s views a rock outcrop after arriving for a short stay at ‘Waypoint 1’- dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech

Curiosity’s views a rock outcrop at ‘Darwin’ after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392) – dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech
Story updated – see close up mosaic views of Darwin outcrop below[/caption]

NASA’s Curiosity Mars rover has just rolled into an intriguing site called ‘Darwin’ at ‘Waypoint 1’- having quickly picked up the driving pace since embarking at last on her epic trek to mysterious Mount Sharp more than two months ago. Did life giving water once flow here on the Red Planet?

Because the long journey to Mount Sharp – the robots primary destination – was certain to last nearly a year, the science team carefully choose a few stopping points for study along the way to help characterize the local terrain. And Curiosity has just pulled into the first of these so called ‘Waypoints’ on Sept 12 (Sol 392), the lead scientist confirmed to Universe Today.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today.

“Darwin is named after a geologic formation of rocks from Antarctica.”

She has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

Altogether, the team selected five ‘Waypoints’ to investigate for a few days each as Curiosity travels in a southwestward direction on the road from the first major science destination in the ‘Glenelg’ area to the foothills of Mount Sharp, says Grotzinger.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

Curiosity's Progress on Rapid Transit Route from 'Glenelg' to Mount Sharp.  Triangles indicate geologic ‘Waypoint’ stopping points along the way.  Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA
Curiosity’s Progress on Rapid Transit Route from ‘Glenelg’ (start at top) to Mount Sharp entry point (bottom). Triangles indicate geologic ‘Waypoint’ stopping points along the way. Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA

‘Waypoint 1’ is an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead. See route map herein.

In fact the team is rather excited about ‘Waypoint 1’ that’s dominated by the tantalizing rocky outcrop discovered there nicknamed ‘Darwin’.

Although Curiosity will only stay a short time at each of the stops, the measurements collected at each ‘Waypoint’ will provide essential clues to the overall geologic and environmental history of the six wheeled rover’s touchdown zone.

“Waypoint 1 was chosen to help break up the drive,” Grotzinger explained to Universe Today.

“It’s a chance to study outcrops along the way.”

The images from MRO are invaluable in aiding the rover handlers planning activities, selecting Curiosity’s driving route and targeting of the most fruitful science forays during the long trek to Mount Sharp – besides being absolutely crucial for the selection of Gale Crater as the robots landing site in August 2012.

The ‘Darwin’ outcrop may provide more data on the flow of liquid water across the crater floor.

Evolving Excitement Over 'Darwin' Rock Outcrop at 'Waypoint 1'.   For at least a couple of days, the science team of NASA's Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called "Darwin."   This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems
Evolving Excitement Over ‘Darwin’ Rock Outcrop at ‘Waypoint 1’. For at least a couple of days, the science team of NASA’s Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called “Darwin.” This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems

The scientists goal is to compare the floor of Gale Crater to the sedimentary layers of 3 mile high (5 kilometer high) Mount Sharp.

Waypoint 1 is just over 1 mile along the approximately 5.3-mile (8.6-kilometer) route from ‘Glenelg’ to the entry point at the base of Mount Sharp.

Curiosity spent over six months investigating the ‘Yellowknife Bay’ area inside Glenelg before departing on July 4, 2013.

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“Recently we left the Yellowknife Quadrangle, so instead of naming rocks after geological formations in Canada’s north, we now turn to formation names of rocks from Antarctica, and Darwin is one of them.

“That will be the theme until we cross into the next quad,” Grotzinger explained.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Inside Yellowknife Bay, Curiosity conducted the historic first interplanetary drilling into Red Planet rocks and subsequent sample analysis with her duo of state of the art chemistry labs – SAM and CheMin.

At Yellowknife Bay, the 1 ton robot discovered a habitable environment containing the chemical ingredients that could sustain Martian microbes- thereby already accomplishing the primary goal of NASA’s flagship mission to Mars.

“We want to know how the rocks at Yellowknife Bay are related to what we’ll see at Mount Sharp,” Grotzinger elaborated in a NASA statement. “That’s what we intend to get from the waypoints between them. We’ll use them to stitch together a timeline — which layers are older, which are younger.”

On Sept. 5, Curiosity set a new one-day distance driving record for the longest drive yet by advancing 464 feet (141.5 meters) on her 13th month on the Red Planet.

As Curiosity neared Waypoint 1 she stopped at a rise called ‘Panorama Point’ on Sept. 7, spotted an outcrop of light toned streaks informally dubbed ‘Darwin and used her MastCam telephoto camera to collect high resolution imagery.

Curiosity will use her cameras, spectrometers and robotic arm for contact science and a “full bore science campaign” involving in-depth mineral and chemical composition analysis of Darwin and Waypoint 1 for the next few Sols, or Martian days, before resuming the trek to Mount Sharp that dominates the center of Gale Crater.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years.  This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

She will not conduct any drilling here or at the other waypoints, several team members have told me, unless there is some truly remarkable ‘Mars-shattering’ discovery.

Why is Curiosity now able to drive longer than ever before?

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today.

“This will increase our ability to drive. But how much it helps really depends on the terrain.”

And so far the terrain has cooperated.

“We are on a general heading of southwest to Mount Sharp,” said Erickson. See the NASA JPL route map.

“We have been going through various options of different planned routes.”

As of today (Sol 394), Curiosity remains healthy, has traveled 2.9 kilometers and snapped over 82,000 images.

If all goes well Curiosity could reach the entry point to Mount Sharp sometime during Spring 2014, at her current driving pace.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers,LADEE, Cygnus, Antares, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Spotting Juno: NASA’s Jupiter-bound Spacecraft Gets a Boost from Earth on October 9th, 2013

An artist's conception of Juno's October 9th flyby of the Earth. (Credit: NASA/JPL -Caltech).

Psst! Live in South Africa and read Universe Today? Then you might just get a peak at the Juno spacecraft as it receives a boost from our fair planet on the evening of October 9th, 2013.

Launched from Cape Canaveral Air Force Station on August 5th, 2011 atop an Atlas 5 rocket in a 551 configuration, Jupiter-bound Juno is approaching the Earth from interior to its orbit over the next month. Its closest approach to the Earth during its October 9th flyby will occur at 19:21 Universal Time (UT) which is 3:21 PM Eastern Daylight Saving Time. The spacecraft will pass 559 kilometres over the South Atlantic to a point 200 kilometres off of the southeastern coast of South Africa at latitude -34.2° south & longitude 34° east.

For context, this is just about 25% higher than the International Space Station orbits at an average of 415 kilometres above the Earth. The ISS is 108.5 metres across on its longest dimension, and we wouldn’t be surprised if Juno were a naked eye object for well placed observers watching from a dark sky site around Cape Town, South Africa. Especially if one of its three enormous 8.9 metre long solar panels were to catch the Sun and flare Iridium-style!

Two minutes before closest approach, Juno will experience the only eclipse of its mission, passing into the umbra of Earth’s shadow for about 20 minutes. Chris Peat at Heavens-Above also told Universe Today that observers in India are also well-placed to catch sight of Juno with binoculars after it exits the Earth’s shadow.

Juno passed its half-way mark to Jupiter last month on August 12th when the “odometer clicked over” to 9.464 astronomical units. Juno will enter orbit around Jupiter on July 4th, 2016. Juno will be the second spacecraft after Galileo to permanently orbit the largest planet in our solar system.

The passage of Juno through the Earth's shadow on October 9th, 2013. (Credit and Copyright: Heavens-Above, used with permission).
The passage of Juno through the Earth’s shadow on October 9th, 2013. (Credit and Copyright: Heavens-Above, used with permission).

Catching a flyby of Juno will be a unique event. Unfortunately, the bulk of the world will miss out, although you can always vicariously fly along with Juno with Eyes on the Solar System. Juno is currently moving about 7 km/s relative to the Earth, and will move slightly faster than the ISS in its apparent motion across the sky from west to east before hitting Earth’s shadow. This slingshot will give Juno a 70% boost in velocity to just under 12km/s relative to Earth, just slower than Pioneer 10’s current motion relative to the Sun of 12.1km/s.

At that speed, Juno will be back out past the Moon in about 10 hours after flyby. There’s a chance that dedicated imagers based along North American longitudes could still spy Juno later that evening.

Juno approaches the Earth from the direction of the constellation Libra and will recede from us in the direction of the constellation Perseus on the night of October 9th.

The ground track covered by Juno as it passes by the Earth. (Credit & Copyright: Heavens-Above, used with permission).
The ground track covered by Juno as it passes by the Earth. (Credit & Copyright: Heavens-Above, used with permission).

There’s also a precedent for spotting such flybys previous. On August 18th, 1999, NASA’s Cassini spacecraft made a flyby of the Earth at 1,171 kilometres distant, witnessed by observers based in the eastern Pacific region. Back then, a fuss had been raised about the dangers that a plutonium-powered spacecraft might posed to the Earth, should a mis-calculation occur. No such worries surround Juno, as it will be the first solar-powered spacecraft to visit the outer solar system.

And NASA wants to hear about your efforts to find and track Juno during its historic 2013 flyby of the Earth. JPL Horizons lists an ephemeris for the Juno spacecraft, which is invaluable for dedicated sky hunters. You can tailor the output for your precise location, then aim a telescope at low power at the predicted right ascension and declination at the proper time, and watch. Precise timing is crucial; I use WWV shortwave radio broadcasting out of Fort Collins, Colorado for ultra-precise time when in the field.

As of this writing, there are no plans to broadcast the passage of Juno live, though I wouldn’t be surprised if someone like Slooh decides to undertake the effort. Also, keep an eye on Heavens-Above, as they may post sighting opportunities as well. We’ll pass ‘em along if they surface!

Late Breaking: And surface they have… a page dedicated to Juno’s flyby of Earth is now up on Heavens-Above.

Juno is slated to perform a one year science mission studying the gravity and magnetic field of Jupiter as well as the polar magnetosphere of the giant planet. During this time, Juno will make 33 orbits of Jupiter to complete its primary science mission. Juno will study the environs of Jupiter from a highly inclined polar orbit, which will unfortunately preclude study of its large moons. Intense radiation is a primary hazard for spacecraft orbiting Jupiter, especially one equipped with solar panels. Juno’s core is shielded by one centimetre thick titanium walls, and it must thread Jupiter’s radiation belts while passing no closer than 4,300 kilometres above the poles on each pass. One run-in with the Io Plasma Torus would do the spacecraft in. Like Galileo, Juno will be purposely deorbited into Jupiter after its primary mission is completed in October 2017.

If you live in the right location, be sure to check out Juno as it visits the Earth, one last time. We’ll keep you posted on any live broadcasts or any further info on sighting opportunities as October 9th draws near!

– Got pics of Juno on its flyby of the Earth? Send ’em in to Universe Today!

– You can also follow the mission on Twitter as @NASAJuno.

NASA Science Probe Blazes Spectacular Trail to the Moon from Virginia

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
Story updated[/caption]

WALLOPS ISLAND, VA – A NASA moon probe named LADEE thundered to space tonight, Sept. 6, blazing a spectacular trail to orbit from a beachside launch pad in Virginia that was easily visible to tens of millions of spectators along the eastern seaboard as a result of crystal clear skies and the night time liftoff – see magnificent photo shot from NYC above by Ben Cooper/Launchphotography.com.

The drama at the LADEE launch site on the eastern shore of Virginia at NASA’s Wallops Island facility was palpable due to the historic and experimental nature of the mission.

Hordes of tourists flooded into Virginia to be eyewitnesses to an unprecedented space spectacle that marked Americas ‘Return to the Moon’ and a chance to see the type of big and exciting rocket launches previously reserved for Florida and California.

Everyone I spoke too was absolutely overwhelmed with the amazing beauty of the Minotaur V blastoff carrying LADEE to orbit, whooping and hollering, far beyond our wildest expectations as the crackling fire pierced through the night and reverberated in our ears!

“It was a picture perfect launch,” said NASA Associate Administrator John Grunsfeld at a post launch media briefing at NASA Wallops.

“LADEE will help us unravel the mysteries of the lunar atmosphere.”

Blastoff of NASA’s dust exploring Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory marked the first space probe of any kind ever launched beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission from Wallops.

LADEE's launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry
LADEE’s launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry

The Minotaur V rocket launched precisely on time at 11:27 p.m. EDT on the maiden flight of the powerful new Minotaur V rocket Launch Pad 0B on NASA’s Wallops Flight Facility.

“The spacecraft is healthy and power positive and separated from the fifth and last stage on time, approximately 23 minutes into the flight,” said Pete Worden to Universe Today after the liftoff. Worden is the Director of NASA’s Ames Research Center which designed and built LADEE using a revolutionary new design to reduce costs and increase science output.

Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The liftoff of LADEE (pronounced ‘laddie’ not ‘lady’) also marks the first launch of a five stage rocket and the first launch of a decommissioned Peacekeeper missile from Wallops. The Peacekeeper was a nuclear armed intercontinental ballistic missile ICBM built during the Cold War – now retired and refurbished by Orbital for peaceful uses.

The Minotaur V fifth stage boosted LADEE into a highly elliptical orbit. Over about the next 23 days, as LADEE orbits Earth 3.5 times, the Moon’s gravitational field will increase the apogee of its orbit. The spacecraft will fire its on-board braking thrusters to achieve lunar orbit.

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The mission will fly in a very low science orbit of about 50 kilometers altitude above the moon that will require considerable fuel to maintain. The science mission duration is approximately 100 days.

The 844 pound (383 kg) robot explorer is the size of a couch and was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

It is equipped with a trio of science instruments whose purpose is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

The LADEE satellite in lunar orbit.   The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.  Credit: NASA
The LADEE satellite in lunar orbit. The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine. Credit: NASA

The couch sized probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system. The overall mission cost is approximately $280 million.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

The five stage Minotaur V rocket stands 80.6 feet (24.6 meters) tall, is 7.6 feet (2.3 m) in diameter and weighs 197,034 pounds (89,373 kilograms).

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The first three stages of the Minotaur V are based on the nuclear armed Peacekeeper ICBM intercontinental ballistic missile built during the Cold War – now retired and refurbished by Orbital Sciences for peaceful uses.

The upper 5th stage is a new addition and what makes this Minotaur a new rocket class. The additional thrust is what converts the Minotaur V into an interplanetary booster that enables shooting for the Moon.

“I dreamed all my life about launching a rocket to the moon. And now we are doing it,” Lou Amorosi, told Universe Today at the Minotuar launch pad. Amorosi is the Senior Vice President of Orbital’s Small Space Launch Vehicle business.

“This mission further demonstrates the capabilities of our well-established Minotaur rocket family and our commitment to providing reliable access to space,” Amorosi noted in a post launch statement.

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations:

Sep 16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

LADEE post launch news briefing at NASA Wallops, VA with  Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and    NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center.   Credit: Ken Kremer/kenkremer.com
LADEE post launch news briefing at NASA Wallops, VA with Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center. Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad.  Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

LADEE_Poster_01

How to See the Historic LADEE Nighttime Moon Shot on Sept. 6

Minotaur V rocket launch view as should be seen from atop the Empire State Building, NY, on Sept. 6, 2013 at 11:12 p.m. EDT - weather permitting.

Minotaur V rocket and LADEE spacecraft launch trajectory view as should be seen from atop the Empire State Building, NY, on Sept. 6, 2013 at 11:27 p.m. EDT – weather permitting.
See more launch trajectory viewing graphics below[/caption]

WALLOPS ISLAND, VA – An unprecedented spectacle is set to light up the skies this Friday night, Sept. 6, courtesy of NASA when America returns to the Moon with the history making nighttime launch of the LADEE lunar orbiter atop a retired and specially converted intercontinental ballistic missile (ICBM) from NASA’s Wallops Island facility on the Virginia shoreline.

Blastoff of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory atop the maiden flight of the powerful new Minotaur V rocket is slated for 11:27 p.m. EDT Sept. 6 from Launch Pad 0B along the Eastern Shore of Virginia at NASA Wallops.

Because it’s at night and lifting off from the most densely populated region of the United States, the flames spewing from the tail of Minotaur could be visible to tens of millions of distant spectators – weather permitting – who have never before witnessed such a rocket launch.

So you don’t have to be watching locally to join in the fun and excitement. And you can always watch the NASA TV webcast online on a smartphone or laptop.

Minotaur V rocket launch view as should be seen from Wright Brothers Memorial, Kitty Hawk, NC
Minotaur V rocket launch view as should be seen from Wright Brothers Memorial, Kitty Hawk, NC

The LADEE (pronounced ‘laddie’ not ‘lady’) launch is historic in many ways.

No space satellite has ever been launched to beyond Earth orbit from NASA’s Wallops’s launch base in Virginia, it’s the first flight to the Moon from Wallops, the first Minotaur V rocket launch based on the Peacekeeper missile, and it’s the first flight of the revolutionary new modular spacecraft design aimed at significantly cutting the cost of exploring space.

So although the very best views are available from local areas in Virginia, Maryland and Delaware just tens of miles away from the Wallops Island launch pad, magnificent viewing opportunities are available from a broad region up and down the East Coast and into the interior.

LADEE_Poster_01

Let’s look at some viewing maps courtesy of Orbital Sciences, the company responsible for assembling the Minotaur V and integrating it with the LADEE spacecraft – built by NASA’s Ames Research Center.

First up is the Maximum elevation map showing how high the rocket will be visible in degrees from the heavily populated US East Coast stretching from Maine to both Carolinas and into the industrial Midwest.

LADEE Minotaur V Launch – Maximum Elevation Map  The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences
LADEE Minotaur V Launch – Maximum Elevation Map
The LADEE nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Minotaur V rocket will reach during the Sep. 6, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences

Herein are a series of graphics showing the Minotaur V trajectory and what you should see – during firings of the first three stages – from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including the US Capitol, Lincoln Memorial, Kitty Hawk, NC, Atlantic City, NJ, New York City, Cape Cod and more.

US Capitol
US Capitol
Cape Cod, MA
Cape Cod, MA
Lincoln Memorial
Lincoln Memorial
New York City (Battery Park)
New York City (Battery Park)

The five stage Minotaur V rocket stands 80.6 feet (24.6 meters) tall, is 7.6 feet (2.3 m) in diameter and weighs 197,034 pounds (89,373 kilograms.

The first three stages of the Minotaur V are based on the nuclear armed Peacekeeper ICBM intercontinental ballistic missile built during the Cold War – now retired and refurbished by Orbital for peaceful uses. It’s literally beating swords into plowshares.

The 5th stage is a new addition and what makes this Minotaur a new rocket class. The added thrust is precisely what enables shooting for the Moon.

Minotaur V rocket launch view as should be seen from Atlantic City, NJ
Minotaur V rocket launch view as should be seen from Atlantic City, NJ

For anyone coming to the Wallops area for an eyewitness view of the launch, NASA worked with local officials to establish several viewing locations just 10 miles or so from the launch pad at the Mid-Atlantic Regional Spaceport, at NASA’s Wallops Flight Facility, Wallops Island, Va.

Visitors to the area may view the launch from Robert Reed Park on Chincoteague or Beach Road spanning the area between Chincoteague and Assateague Islands.

Both sites will feature a live countdown and broadcast and NASA personnel will be on hand to discuss the LADEE launch and goals of the mission.

A big-screen projector will broadcast live in Robert Reed Park beginning at 9:30 p.m.

“We’re excited about this partnership with the community in providing an enhanced launch experience to members of the public,” said Jeremy Eggers, public information officer for NASA Wallops in a statement. “The live countdown and launch broadcast will place people in mission control on launch night for what is already a historic mission for Wallops and the Eastern Shore.”

NASA TV starts a live broadcast of the launch at 9:30 p.m. on Sept 6 – available here: http://www.nasa.gov/ntv

Minotaur V rocket with NASA’s LADEE lunar orbiter unveiled at NASA Wallops launch pad.  Credit: NASA EDGE/Franklin Fitzgerald
Minotaur V rocket with NASA’s LADEE lunar orbiter unveiled at NASA Wallops launch pad. Credit: NASA EDGE/Franklin Fitzgerald

The couch sized 844 pound (383 kg) robotic explorer is equipped with 3 science instruments and a laser technology demonstrator.

These include an ultraviolet and visible light spectrometer that will gather detailed information about the composition of the tenuous lunar atmosphere; a neutral mass spectrometer to measure variations in the lunar atmosphere over time; a laser dust experiment that will collect and analyze dust particle samples; and a laser communications experiment that will test the use of lasers in place of radio waves for high speed data communications with Earth.

Be sure to watch for my continuing LADEE and Antares launch reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Close-up view of STAR 37FM 5th stage solid fuel motor of Minotaur V rocket at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. Credit: Ken Kremer/kenkremer.com
LADEE’s Ticket to the Moon – 5th Stage of new Minotaur V rocket
Close-up view of STAR 37 5th stage solid fuel motor for inaugural Minotaur V rocket launch at NASA Wallops rocket facility will propel LADEE into its lunar transfer orbit. LADEE will be mounted on top and surrounded by the payload fairing attached at bottom ring. Credit: Ken Kremer/kenkremer.com

NASA: 96 Things You Can Do With an Asteroid

Landing on asteroids will be a risky endeavor, perhaps aggravated by changes in asteroid dust when it's touched. Credit: NASA Near Earth Object Program

NASA is really getting into this crowd-sourcing thing. The space agency asked and the public responded with hundreds of ideas of what missions could be done with asteroids in regards to protecting Earth from these space rocks and finding an asteroid humans can explore. NASA received over 400 responses to their “Asteroid Initiative Request For Information” request, hearing from the space industry, universities, and the general public.

Now, after looking at all the responses, NASA has chosen 96 ideas it regards as most promising, ranging from asteroid observation plans to asteroid redirection, deflection or capture systems, to creating crowd sourcing and citizen science opportunities.

Next, NASA will host an Asteroid Initiative Idea Synthesis Workshop where NASA personnel and the space community will discuss and further these 96 ideas to narrow them down even further to help with its planning activities and future missions.
The 96 ideas were chosen by a team of NASA scientists, engineers, and mission planners who evaluated the proposed ideas. The evaluation team rated the responses for relevance to the RFI objectives, innovativeness of the idea, maturity of the development approach, and potential to improve mission affordability.

This is the first time NASA has used this type of crowd-sourcing and discussion method to look at possible future missions.

NASA said the ideas proposed “provide the agency with fresh insight into how best to identify, capture and relocate a near-Earth asteroid for closer study and respond to asteroid threats.” Ideas included pointers on how to decrease an asteroid’s spin, nudge it away from a path toward Earth, take samples to return to Earth and create activities to heighten public awareness of not only the threat asteroids pose, but the valuable resources and scientific benefits they may offer.

“This rich set of innovative ideas gathered from all over the world provides us with a great deal of information to factor into our plans moving forward,” said Robert Lightfoot, Associate Administrator for NASA. “We’re making great progress on formulating this mission, and we look forward to discussing further the responses we received to the RFI.”

The upcoming public workshop will be held on Sept. 30 – Oct. 2 and onsite participation is limited to just the presenters, but it appears the workshop will be webcast (more info later), as NASA said they will release information on virtual participation options as the workshop nears.

Source: NASA