History Created as India Dares Unknown and Achieves Near Impossible – MOM Successfully Arrives in Mars Orbit

Artists concept of India’s Mars Orbiter Mission (MOM) successfully achieving Mars orbit on Sept. 23 EDT/Sept. 24 IST . Credit: ISRO

Artists concept of India’s Mars Orbiter Mission (MOM) successfully achieving Mars orbit on Sept. 23 EDT/Sept. 24 IST. Credit: ISRO
Story updated[/caption]

Space history was made today when India’s car sized Mars Orbiter Mission (MOM) successfully fired its braking rockets and arrived in Mars orbit today (Sept. 23 EST/Sept. 24 IST) on the nation’s first attempt to explore the Red Planet. Indeed MOM is India’s maiden interplanetary voyager and “created history.”

India thereby joins an elite club of only three other entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Wild applause erupted with beaming smiles from ear to ear at India’s Bangalore mission control center after signals confirming a successful full duration firing of the crafts engines for 24 minutes and 13 seconds for the crucial Mars Orbital Insertion (MOI) maneuver that placed MOM into orbit, were received precisely as planned at 10:30 p.m. EDT (Sept 23) or 8:00 IST (Sept. 24).

Traveling at the speed of light it took nearly 12.5 minutes for the good news signals to arrive on Earth from Mars across the vast expanse of some 140 million miles (225 million kilometers) of interplanetary space.

MOM’s Red Planet arrival was webcast live worldwide by the Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter.

ISRO’s website also gave a play by play in real time, announcing the results of critical spacecraft actions along the arrival timeline just moments after they became known.

“India has successfully reached Mars!” declared Indian prime minister Narendra Modi, who watched the events unfold from mission control at ISRO’s Telemetry, Tracking and Command Network (ISTRAC) in Bangalore.

“History has been created today. We have dared to reach out into the unknown and have achieved the near-impossible. I congratulate all ISRO scientists as well as all my fellow Indians on this historic occasion.”

Modi gave a stirring and passionate speech to the team, the nation and a global audience outlining the benefits and importance of India’s space program. He implored the team to strive for even greater space exploration challenges, sounding very much like US President John F. Kennedy over 50 years ago!

“We have gone beyond the boundaries of human enterprise and imagination,” Modi stated. “We have accurately navigated our spacecraft through a route known to very few. And we have done it from a distance so large that it took even a command signal from Earth to reach it more than it takes sunlight to reach us.”

The do-or-die MOI breaking maneuver slowed MOM’s velocity by 1099 m/s (2457 mph) vs. an expected 1098.7 m/s – using the combined thrust of the 440 Newton Liquid Apogee Motor (LAM) main engine and eight smaller 22 newton liquid fueled engines.

The entire MOI maneuver took place fully autonomously under the spacecrafts preprogrammed sole control due to the long communications lag time and also during a partial communications blackout when the probe was traveling behind Mars and the signal was blocked.

MOM’s goal is to study Mars surface features, morphology, mineralogy and the Martian atmosphere with five indigenous scientific instruments. Among other goals it will sniff for methane as a potential marker for biological activity.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21.

Modi noted that more than half of all missions to Mars have failed.

“We have prevailed. We have succeeded on our first attempt. We put together the spacecraft in record time, in a mere three years from first studying its feasibility,” Modi elaborated.

“These are accomplishments that will go down in history. Innovation by its very nature involves risk. It is a leap into the dark .. . and the unknown. Space is indeed the biggest unknown out there.”

“Through your brilliance and hard work [at ISRO] you have made a habit of accomplishing the impossible.”

“The success of our space program is a shining symbol of what we are capable of as a nation. Our space program is an example of achievement which inspires us all .. and future generations … to strive for excellence ourselves.”

“Space technology translates to space applications here on Earth … to improve the life of our citizens.”

“Let us set ourselves even more challenging goals and strive even harder to achieve them. Let us push our boundaries. And then push some more, and push some more!” said Modi jubilantly.

MOM now joins Earth’s newly fortified armada of seven spacecraft currently operating on Mars surface or in orbit – including MAVEN, Mars Odyssey (MO), Mars Reconnaissance Orbiter MRO), Mars Express (MEX), Curiosity and Opportunity.

“MOM and MAVEN will keep each other company in orbit,” said Modi.

Today, MOM concluded her over 10 month interplanetary voyage of some 442 million miles (712 million km) from Earth to the Red Planet.

“Congratulations to the MOM team on behalf of the entire MAVEN team! Here’s to exciting science from the two latest missions to join the Mars fleet!”, wrote Bruce Jakosky, MAVEN Principal Investigator, in a post on the ISRO MOM facebook page.

ISRO's Mars Orbiter Mission - The plan of action for Mars Orbit Insertion on September 24. Credit ISRO
ISRO’s Mars Orbiter Mission – The plan of action for Mars Orbit Insertion on September 24. Credit ISRO

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV).

The flight path of the approximately $73 Million probe was being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.

“The events related to Mars Orbit Insertion progressed satisfactorily and the spacecraft performance was normal. The Spacecraft is now circling Mars in an orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended. In this orbit, the spacecraft takes 72 hours 51 minutes 51 seconds to go round the Mars once,” according to an ISRO statement.

MOM is expected to investigate the Red Planet for at least six months.

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

The Answer is Expedition 42

Expedition 42 to the International Space Station poses as characters from Douglas Adams' 'Hitchhiker's Guide to the Universe.' Credit: NASA.

Don’t panic! NASA has been creating some great posters for their missions and Expedition crews to the International Space Stations, and this newest one will warm the heart of any Douglas Adams fan. As we all know, 42 is the Answer to the Ultimate Question of Life, the Universe and Everything. Right now, the first half of the Expedition 42 crew has a targeted launch date of Nov. 23, 2014.

Featuring (from left to right):

Terry Virts and Anton Shkaplerov as Zaphod Beeblebrox
Aleksandr Samokutyayev as Humma Kavula
Barry “Butch” Wilmore as Arthur Dent
Elena Serova as Ford Prefect
Samantha Cristoforetti as Trillian

Guest star: Robonaut, as Marvin the Paranoid Android

Samantha Cristoforetti posted this image on her Flickr page and said the family of Douglas Adams gave the crew permission to do the photo-shoot for this poster, and added that the Point-of-View gun is not Photoshopped, but a real creation.

You can find out more about Expedition 42 here.

Find all the crew posters at the NASA Spaceflight Awareness product page. And try not to download too many! They’re all great.

India’s First Mars Mission MOM Meets Mars on Sept. 23/24 – Watch Arrival Live

The Mars Orbiter Mission (MOM) is India’s first mission to the Red Planet. The historic arrival on Sept. 23/24 will be webcast live by ISRO. Details below. Credit: ISRO

Its D-Day for MOM! The Mars Orbiter Mission (MOM) is India’s history making first mission to the Red Planet and she arrives today, Sept. 23/24 !

MOM’s goal is to study Mars’ surface features, morphology, mineralogy, and the Martian atmosphere with five indigenous scientific instruments. Among other goals it will sniff for methane.

Depending on your time zone, today’s historic arrival falls on either Sept. 23 (EST) or Sept. 24 (IST).

MOM’s entire future depends on conducting a successful and precise, do-or-die Mars Orbital Insertion (MOI) braking burn just hours from now.

The MOI engine firing is targeted for Sept. 23 at 9:47:32 p.m. EDT and Sept. 24 at 07:17:32 hrs IST.

And you can watch all the action live as it happens via a live webcast from the Indian Space Research Organization (ISRO) website, India’s space agency which designed and developed MOM for about $69 Million.

ISRO’s live streaming webcast starts on the US East Coast today, Sept. 23, at 9:15 p.m. EDT and in India on Sept. 24 at 6:45 IST: http://www.isro.org/

Here’s another webcast link for MOM’s Mars Orbit Insertion (MOI) from ISTRAC, Bangalore: http://webcast.isro.gov.in/

The MOI burn involves firing the probes 440 Newton Liquid Apogee Motor (LAM) and eight smaller 22 Newton liquid fueled engines for a duration of about 24 minutes to enter Mars’ orbit.

Confirmation of a successful start to the engine burn could be received back on Earth at about 10 p.m. EDT or 7:30 IST. Confirmation of a successful MOI conclusion could be received by about 10:30 p.m. EDT or 8:00 IST

On Monday, Sept 22, engineers at the Bangalore mission control center verified the performance and readiness of the LAM by conducting the final Trajectory Correction Maneuver (TCM-4) with a engine burst duration of 3.968 seconds.

“We had a perfect burn for four seconds as programmed. MOM will now go-ahead with the nominal plan for Mars Orbital Insertion,” said ISRO.

The Indian engineering team has only one chance to get it right, and the entire world is pulling for India. NASA, JPL, and the DSN have sent along extra special good luck wishes in the form of group photos below.

Good luck wishes for MOM from NASA and JPL.  Credit: NASA/ISRO
Good luck wishes for MOM from NASA and JPL. Credit: NASA/ISRO

Everyone is wishing for complete success for the probe which reaches Mars just two days after NASA’s MAVEN orbiter successfully achieved orbit on Sunday night, Sept. 21.

“We wish a successful MOI for MOM,” said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder (CU/LASP) at MAVEN’s post MOI briefing on Monday, Sept. 22.

ISRO reports today that all systems are currently “GO.”

Watch this cool animation showing the interplanetary path of MOM and MAVEN from Earth to Mars sent to me be an appreciative reader – Sankaranarayanan K V:

If all goes well, MOM will join Earth’s newly fortified armada of six spacecraft operating on Mars surface or in orbit – MAVEN, Mars Odyssey (MO), Mars Reconnaissance Orbiter (MRO), Mars Express (MEX), Curiosity, and Opportunity.

Today, MOM concludes her 10 month interplanetary voyage of some 442 million miles (712 million km) from Earth to the Red Planet.

Good luck MOM!

ISRO's Mars Orbiter Mission - The plan of action for Mars Orbit Insertion on September 24. Credit ISRO
ISRO’s Mars Orbiter Mission – The plan of action for Mars Orbit Insertion on September 24. Credit ISRO

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Commercial SpaceX Dragon Cargo Capsule Arrives at Space Station

The SpaceX Dragon CRS-4 private space freighter berths at the International Space Station on Sept.23, 2014. Credit: NASA TV

After a two day chase through space, a commercial SpaceX Dragon cargo capsule completed its orbital ballet and arrived at the International Space Station (ISS) today, Sept. 23, packed with some 2.5 tons of ground breaking science experiments and supplies for the human crew.

The Dragon CRS-4 resupply freighter rendezvoused with the station early this morning following a carefully choreographed series of thruster firings that brought the vessel to within a capture distance of some 10 meters (32 feet) beneath the massive orbiting outpost.

Expedition 41 crewmember and European Space Agency astronaut Alexander Gerst then maneuvered the station’s 58-foot Canadian built robotic arm. He deftly captured the Dragon at 6:52 a.m. EDT while working at the controls of the robotics workstation in the Cupola module and as the station soared some 260 miles above the Pacific Ocean.

NASA TV live coverage of the rendezvous and grappling process began at 5:00 a.m. EDT with berthing coverage concluding about 9:30 a.m. – http://www.nasa.gov/ntv

NASA astronaut Reid Wiseman assisted Gerst in operating the Canadarm2 from inside the domed, seven windowed Cupola.

Approximately two hours later at 9 a.m. EST, the private SpaceX Dragon was berthed at the Earth-facing port on the stations Harmony module.

See the Dragon’s location on ISS graphic below.

Current ISS configuration on Sept. 23, 2014 following berthing of SpaceX Dragon CRS-4.  Credit: NASA TV
Current ISS configuration on Sept. 23, 2014 following berthing of SpaceX Dragon CRS-4. Credit: NASA TV

The SpaceX Dragon CRS-4 cargo mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida at 1:52 a.m. EDT Sunday, Sept. 21, just hours after a deluge of widespread rain showers inundated central Florida. Story here.

CRS-4 marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

Eight more Dragon cargo missions to the ISS are slated through 2016.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

Alexander Gerst and Reid Wiseman watch the approach of the SpaceX Dragon from the Cupola. Credit: NASA TV
Alexander Gerst and Reid Wiseman watch the approach of the SpaceX Dragon from the Cupola.
Credit: NASA TV

This mission opens a new era in Earth science for the ISS. Tucked inside the Dragon’s unpressurized trunk section at the rear is the ISS-Rapid Scatterometer.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the station’s exterior. The station’s robot arm will pluck RapidScat out of the trunk and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

The remote sensing instrument will use radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

Dragon also carries the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

Also aboard are 20 mice housed in a special rodent habitat, as well as fruit flies.

Dragon will remain docked to the ISS for about a month. Then it will return to Earth via a parachute assisted Pacific Ocean landing off the coast of Baja California. On the return trip, the capsule will be packed with nearly 3,300 pounds (1,486 kg) of cargo, science samples, and computer and vehicle hardware for engineering checks.

The next SpaceX unmanned resupply mission is set to launch in early December on the CRS-5 flight.

The SpaceX Dragon private space freighter approaches the International Space Station. Credit: NASA TV
The SpaceX Dragon private space freighter approaches the International Space Station.
Credit: NASA TV

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Jeff Seibert/Wired4Space
SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Jeff Seibert/Wired4Space
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

2 Days Out from the Red Planet, India’s MOM Probe Test Fires Main Engine for Mars Orbit Insertion

India’s Mars Orbiter Mission (MOM) is closing in on the Red Planet and the Mars Orbit Insertion engine firing when it arrives on September 24, 2014 after its 10 month interplanetary journey. Credit ISRO

Two days out from her history making date with destiny, India’s Mars Orbiter Mission (MOM) successfully completed a crucial test firing of the spacecraft’s main liquid engine to confirm its operational readiness for the critical Mars Orbital Insertion (MOI) engine firing on Wednesday morning Sept. 24 IST (Tuesday evening Sept. 23 EDT).

Engineers at the Indian Space Research Organization (ISRO) which designed and developed MOM successfully fired the probes 440 Newton Liquid Apogee Motor (LAM) earlier today, Sept. 22, 2014, for a duration of 3.968 seconds at 1430 hrs IST (Indian Standard Time), according to today’s announcement from ISRO.

“We had a perfect burn for four seconds as programmed. MOM will now go-ahead with the nominal plan for Mars Orbital Insertion,” said ISRO.

ISRO's Mars Orbiter Mission - The plan of action for Mars Orbit Insertion on September 24. Credit ISRO
ISRO’s Mars Orbiter Mission – The plan of action for Mars Orbit Insertion on September 24. Credit ISRO

MOM counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun – if all goes well.

The LAM was last fired over nine months ago on December 01, 2013 to inject MOM into a ten month long interplanetary Trans Mars Trajectory.

Today’s operation verified that LAM is fully operational to perform the do-or-die MOI braking burn on Sept. 24 targeted for 07:17:32 hrs IST (Sept. 23, 9:47:32 p.m. EDT) that will place the probe into a highly elliptical 377 km x 80,000 km orbit around the Red Planet.

You can watch all the action live on ISRO’s website during the streaming webcast starting at 6:45 IST (9:15 p.m. EDT): http://www.isro.org/

The burn was also marks the spacecraft’s final Trajectory Correction Maneuver known as TCM-4 and changed its velocity by 2.18 meters/second.

“The trajectory has been corrected,” said ISRO.

The $69 Million probe is being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

ISRO space engineers are taking care to precisely navigate MOM to keep it on course during its long heliocentric trajectory from Earth to Mars through a series of in flight Trajectory Correction Maneuvers (TCMs).

The last TCM was successfully performed on June 11 by firing the spacecraft’s 22 Newton thrusters for a duration of 16 seconds. TCM-1 was conducted on December 11, 2013 by firing the 22 Newton Thrusters for 40.5 seconds.

Engineers determined that a TCM planned for August was not needed.

On “D-Day” as ISRO calls it, the LAM and the eight smaller 22 Newton liquid fueled engines are scheduled to fire for a duration of about 24 minutes.

The MOI braking burn will be carried out fully autonomously since MOM will be eclipsed by Mars due to the Sun-Earth-Mars geometry about five minutes prior to initiation of the engine firing.

Round trip radio signals communicating with MOM now take some 21 minutes.

The 1,350 kilogram (2,980 pound) probe has been streaking through space for over ten months.

MOM follows hot on the heels of NASA’s MAVEN spacecraft which successfully achieved Red Planet orbit less than a day ago on Sunday, Sept. 22, 2014.

“We wish a successful MOI for MOM,” said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder (CU/LASP) at MAVEN’s post MOI briefing earlier today.

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nation’s indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.

Watch this cool animation showing the interplanetary path of MOM and MAVEN from Earth to Mars sent to me be an appreciative reader – Sankaranarayanan K V:

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri-color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Both MAVEN’s and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars’ climate into its cold, desiccated state of today.

If all goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

NASA Explains: The Difference Between CMEs and Solar Flares

Solar prominences and filaments on the Sun on September 18, 2014, as seen with a hydrogen alpha filter. Credit and copyright: John Chumack/Galactic Images.

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explains it — and visualizes it — extremely well.

“CMEs and solar flares are both explosions that occur on the Sun,” the folks at NASA’s Goddard Spaceflight Center’s Scientific Visualization Studio explain. “Sometimes they occur together, but they are not the same thing.”

CMEs are giant clouds of particles from the Sun hurled out into space, while flares are flashes of light — occurring in various wavelengths — on the Sun.

You can find even more details from NASA here.

SpaceX Commercial Resupply Dragon Set for Sept. 21 Blastoff to Station – Watch Live

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]

KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.

Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.

Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.

If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.

“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.

Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com
Story/launch date/headline updated

You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/

Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014.   Credit: Ken Kremer/kenkremer.com
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014. Credit: Ken Kremer/kenkremer.com

The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.

SpaceX Falcon 9  rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission.  Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.

After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.

The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV
SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.

NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA
SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA

Watch Live as NASA Announces Who Will Fly Astronauts to the Space Station



Broadcast live streaming video on Ustream

NASA will make a “major announcement” today on the return of human spaceflight launches for the U.S, specifically which commercial space company — or companies — will taxi astronauts to and from the International Space. You can watch the press conference live here today (Sept. 16) at 4 pm EDT (1 pm PDT, 20:00 UTC).

The competition for the Commercial Crew Program (CCP) has been between four companies: SpaceX, Boeing, Sierra Nevada and Blue Origin. Some media reports indicate NASA will make commercial crew awards to the obvious front-runners, Boeing and SpaceX.

SpaceX’s Dragon became the first commercial spacecraft to deliver cargo to the space station in 2012, and SpaceX has been working on a version of the Dragon that can carry humans as well.

Boeing’s CST-100 can carry up to seven passengers or a mix of humans and cargo.

Sierra Nevada has been working on the Dream Chaser, a winged spacecraft that looks similar to a mini space shuttle. Blue Origin has been developing a capsule called Space Vehicle.

The CCP program was developed after the space shuttle program ended in 2011. While NASA focuses its human spaceflight efforts on the new Space Launch System and going beyond Earth orbit, they will use commercial companies that will launch from the US to ferry their astronauts to the space station.

Comet’s Head Selected as Landing Site for Rosetta’s Historic Philae Lander

Context image showing the location of the primary landing site for Rosetta’s lander Philae. Site J is located on the head of Comet 67P/Churyumov–Gerasimenko. An inset showing a close up of the landing site is also shown. The inset image was taken by Rosetta’s OSIRIS narrow-angle camera on 20 August 2014 from a distance of about 67 km. The image scale is 1.2 metres/pixel. The background image was taken on 16 August from a distance of about 100 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The ‘head’ of the bizarre comet 67P/Churyumov-Gerasimenko has been selected as the primary landing site for the Rosetta spacecraft’s attached Philae lander, attempting mankind’s first ever landing on a comet in mid-November.

Scientists leading the European Space Agency’s Rosetta mission announced the primary landing site at a media briefing today, Sept. 15, at ESA headquarters.

After weeks of detailed study and debate focused on balancing scientific interest with finding a ‘technically feasible’ and safe Philae touchdown site, the team chose a target dubbed Site J as the primary landing site from among a list of five initially selected sites, said Stephan Ulamec, Philae Lander Manager at the DLR German Aerospace Center, at the briefing.

“Site J is the primary landing site around the head of the comet,” Ulamec announced.

“Site C is the backup site on the body [near the bottom of the comet].”

“This was not an easy task. Site J is a mix of flat areas and rough terrain. It’s not a perfectly flat area. There is still risk with high slope areas.”

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

He also made clear that there is still some landing uncertainty with the targeting of the lander onto the comet.

Site J is an intriguing region on Comet 67P/Churyumov–Gerasimenko that offers unique scientific potential, with hints of activity nearby, and minimum risk to the lander compared to the other candidate sites, according to ESA.

“As we have seen from recent close-up images, the comet is a beautiful but dramatic world – it is scientifically exciting, but its shape makes it operationally challenging,” says Ulamec.

“None of the candidate landing sites met all of the operational criteria at the 100% level, but Site J is clearly the best solution.”

Philae’s history-making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

“All of Rosetta’s instruments are supporting the landing site selection,” said Holger Sierks, principal investigator for Rosetta’s OSIRIS camera from the Max Planck Institute for Solar System Research in Gottingen, Germany.

“Site J is just 500-600 meters away from some pits and an area of comet outgassing activity. They will become more active as we get closer to the sun.

The team is in a race against time to select a suitable landing zone quickly and develop the complex landing sequence since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

Since the descent to the comet is passive it is only possible to predict that the landing point will place within a ‘landing ellipse’ typically a few hundred metres in size, the team elaborated.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 20 to 30 centimeters into and sample its incredibly varied surface.

“We will make the first ever in situ analysis of a comet at this site, giving us an unparalleled insight into the composition, structure and evolution of a comet,” says Jean-Pierre Bibring, a lead lander scientist and principal investigator of the CIVA instrument at the IAS in Orsay, France.

“Site J in particular offers us the chance to analyse pristine material, characterise the properties of the nucleus, and study the processes that drive its activity.”

“It’s amazing how much we have learned so far.”

“We are in a true revolution of how we think Planets form and evolve,” Bibring elaborated at the briefing.

“We will make many types of scientific measurements of the comet from the surface. We will get a complete panoramic view of the comet on the macroscopic and microscopic scale.”

Rosetta is currently orbiting the comet from a distance of 30 km, said ESA Rosetta flight director Andrea Accomazzo. He said it will likely go even closer to 20 km and perhaps 10 km.

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region. Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region. Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer – kenkremer.com

“Now that we’re closer to the comet, continued science and mapping operations will help us improve the analysis of the primary and backup landing sites,” says ESA Rosetta flight director Andrea Accomazzo.

“Of course, we cannot predict the activity of the comet between now and landing, and on landing day itself. A sudden increase in activity could affect the position of Rosetta in its orbit at the moment of deployment and in turn the exact location where Philae will land, and that’s what makes this a risky operation.”

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

The final landing site selections were made at a meeting being held this weekend on 13 and 14 September 2014 between the Rosetta Lander Team and the Rosetta orbiter team at CNES in Toulouse, France.

“No one has ever attempted to land on a comet before, so it is a real challenge,” says Fred Jansen, ESA Rosetta mission manager.

“The complicated ‘double’ structure of the comet has had a considerable impact on the overall risks related to landing, but they are risks worth taking to have the chance of making the first ever soft landing on a comet.”

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Unveils World’s Largest Welder to Build World’s Most Powerful Rocket

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer - kenkremer.com

MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA Administrator Charles Bolden officially unveiled the world’s largest welder to start construction of the world’s most powerful rocket – NASA’s Space Launch System (SLS) rocket – at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.

Administrator Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge welder at Michoud’s Vertical Assembly Center (VAC).

The welder is now officially open for business and will be used to manufacture the core stage of the SLS, NASA’s mammoth heavy lift rocket that is intended to take humans to destinations far beyond Earth and farther into deep space than ever before possible – to Asteroids and Mars.

“This rocket is a game changer in terms of deep space exploration and will launch NASA astronauts to investigate asteroids and explore the surface of Mars while opening new possibilities for science missions, as well,” said NASA Administrator Charles Bolden during the ribbon-cutting ceremony at Michoud on Sept. 12.

“The Road to Mars starts at Michoud,” said Bolden, at the welding tool ceremony attended by Universe Today.

The SLS is designed to launch astronaut crews aboard NASA’s next generation Orion deep space capsule concurrently under development.

The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It completes a world-class welding toolkit that will be used to assemble pieces of the SLS core stage including domes, rings and barrels that have already been manufactured. It will tower over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

The core stage stores cryogenic liquid hydrogen and liquid oxygen. Boeing is the prime contractor for the SLS core stage.

The SLS core stage builds on heritage from NASA’s Space Shuttle Program.

The first stage propulsion is powered by four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

As I reported recently, NASA managers formally approved the development of the agency’s mammoth Mars rocket after a thorough review of cost and engineering issues.

“The SLS Program continues to make significant progress,” said Todd May, SLS program manager.

“The core stage and boosters have both completed critical design review, and NASA recently approved the SLS Program’s progression from formulation to development. This is a major milestone for the program and proof the first new design for SLS is mature enough for production.”

The maiden test launch of the SLS is targeted for November 2018 and will be configured in its initial 70-metric-ton (77-ton) version, top NASA officials announced at a briefing for reporters on Aug. 27.

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC

The decision to move forward with the SLS comes after a wide ranging review of the technical risks, costs, schedules and timing known as Key Decision Point C (KDP-C), said Associate Administrator Robert Lightfoot, at the briefing. Lightfoot oversaw the review process.

“After rigorous review, we’re committing today to a funding level and readiness date that will keep us on track to sending humans to Mars in the 2030s – and we’re going to stand behind that commitment,” said Lightfoot. “Our nation is embarked on an ambitious space exploration program.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden and Ken Kremer/Universe Today discuss NASA’s SLS heavy lift rocket at ribbon cutting ceremony unveiling world’s largest rocket welder at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. We're standing at the welding tools base in the Vertical Assembly Center. Credit: Ken Kremer – kenkremer.com
NASA Administrator Charles Bolden and Ken Kremer/Universe Today discuss NASA’s SLS heavy lift rocket at ribbon cutting ceremony unveiling world’s largest rocket welder at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. We’re standing at the welding tools base in the Vertical Assembly Center. Credit: Ken Kremer – kenkremer.com