LCROSS (and the Moon) Up Close

LCROSS Close Up Side view of LCROSS wrapped in gold colored multi layer thermal insulation. Note solar array at left. Science instrument, avionics, navigation, communication and thruster equipment panels encircle and are attached to the central payload adapter ring. Star tracker at right. Payload fairing halves sit at either side. Credit: Ken Kremer and the Planetary Society. Used by permission.

[/caption]
The LCROSS spacecraft will be giving it all up for science Friday morning when it and the second stage of the Centaur rocket impact Cabeus crater on the Moon’s south pole, searching for possible water ice hidden inside the perpetually dark portions of the crater. Since we’ll never see LCROSS again, its only fitting to take a good long, last look at her. Solar System Ambassador and Planetary Society volunteer Ken Kremer had the wonderful opportunity to see both LCROSS and her sister ship the Lunar Reconnaissance Orbiter (LRO) in the Astrotech Space Operations Facility clean room in Titusville, FL earlier this year before the dynamic duo launched together on June 18. Ken has graciously given permission to allow us to publish these images (which were previously posted on the Planetary Society website) so we can all remember what she looked like. Above is a side view of LCROSS wrapped in gold multi-layer thermal insulation. The solar array is on the left side. Science instrument, avionics, navigation, communication and thruster equipment panels encircle and are attached to the central payload adapter ring. The star tracker is on the right side, and the payload fairing halves sit at either side.

More images below.

LRO, LCROSS and Ken Kremer.  Credit: Ken Kremer and the Planetary Society.
LRO, LCROSS and Ken Kremer. Credit: Ken Kremer and the Planetary Society.

Here’s a picture of Ken with the two spacecraft. Visible are the solar arrays for LRO (top, left) and LCROSS (bottom, left). Visible is the LCROSS panel with the 9 science instruments (gold color) which run on just 100 watts of power. Above Ken’s head is the visible light camera.

LRO (gray) and LCROSS (yellow) lunar spacecraft stacked adjacent to Atlas V payload fairing at Astrotech Payload Facility on May 15, 2009.  Credit: Ken Kremer and the Planetary Society.
LRO (gray) and LCROSS (yellow) lunar spacecraft stacked adjacent to Atlas V payload fairing at Astrotech Payload Facility on May 15, 2009. Credit: Ken Kremer and the Planetary Society.


This image really provides a reference to how big these two spacecraft actually are. Note the person in the bunny (clean) suit standing next to LRO (gray) and LCROSS (yellow) lunar spacecraft stacked adjacent to Atlas V payload fairing.

And since we’ve now seen LCROSS up close, here’s a few new close-up images just released by NASA of Cabeus crater.

A birds-eye view of Cabeus crater, LCROSS' target.  Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio
A birds-eye view of Cabeus crater, LCROSS' target. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

This visualization image gives a bird’s-eye view of Cabeus crater and the target zone for the crash site. A 3.5-kilometer-wide “flagpole” marks the targeted location within the crater. Colored stripes on the pole indicate one kilometer steps in elevation above the crater floor, black stripes indicate 5 kilometer steps. The pole stands 25 kilometers tall, and the blue rings mark heights of 50 and 100 kilometers above the impact site.
Key landmarks to locate Cabeus Crater.  Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio
Key landmarks to locate Cabeus Crater. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

This image shows key lunar landmarks used to locate Cabeus crater. The yellow scale shows angular distances in the plane of the impact site; blue arcs show heights 50, 100 and 200 kilometers above it.

And click here for a link to a video visualization that zooms into Zoom into the Moon as it might look shortly after the LCROSS impact. Blue arcs represent 50, 100 and 200 kilometer heights above the crash site.

Hopefully the telescopes trained on this region of the Moon will give us the real images of this event!

Lead image caption: LCROSS Close Up. Side view of LCROSS wrapped in gold colored multi layer thermal insulation. Note solar array at left. Science instrument, avionics, navigation, communication and thruster equipment panels encircle and are attached to the central payload adapter ring. Star tracker at right. Payload fairing halves sit at either side.
Credit: Ken Kremer

Sources: Ken Kremer and the Planetary Society Blog, Goddard Space Flight Center

No, NASA Is Not Bombing the Moon

Artist concept of the Centaur and LCROSS heading towards the Moon. Credit: NASA

There seems to be a little lunacy making the rounds that NASA is going to “bomb” the Moon on Friday morning, or “hurt the Moon,” or “split the Moon in half,” or change its orbit. This is all just nonsense and scare-mongering, and those worried about our Moon can rest assured our lunar companion will remain in the sky relatively unchanged after this experiment to search for water ice on the Moon’s south pole. Let’s take a look at the physics involved and what might happen to the Moon.


First of all, there are no explosives involved. The LCROSS mission is going sending a upper stage of a Centaur rocket and a smaller spacecraft to impact the Moon. The two objects will create a crater — The 5,000-pound (2,270-kilogram) Centaur is expected to slam into Cabeus Crater on the Moon’s south pole at a sharp angle at a speed of 5,600 mph (9,000 kilometers per hour). The Centaur’s collision is expected to create a crater roughly 60 or 70 feet wide (20 meters wide) and perhaps as much as 16 feet (5 meters) deep, ejecting approximately 385 tons of lunar dust and soil — and hopefully some ice.

The LCROSS spacecraft itself, weighing in at 1,500-pounds (700-kilograms), will follow the Centaur by about four minutes and fly through the regolith plume thrown up by the collision, just before it too slams into the lunar surface, kicking up its own smaller plume of debris, all the while using its sensors to look for telltale signs of water, beaming the information back to Earth.

So, yes, it will make a rather big crater on the Moon. But one close-up look at the lunar surface will reveal that the Moon is full of craters, and still regularly receives hits by meteorites and larger space rocks – not as much as in the past, as most of the craters on the Moon are from an earlier period in our history when there was more debris left over from the formation of the solar system. The Moon was not “hurt” in the past, and it will not get hurt by this impact. Additionally, other spacecraft have hit the lunar surface with no adverse effects on the Moon or its orbit.

But will this impact change the Moon’s orbit? Dr. Jeff Goldstein from the National Center for Earth and Space Science Education writes about this on his blog, Blog on the Universe:

The Atlas V Centaur upper stage has a mass of 2,000 kg (the more massive of the two vehicles impacting the Moon). It will be moving at 5,600 mph (2.5 km/sec.) BAM! By comparison, the Moon is orbiting the Earth at the measely speed of 2,300 mph (1.022 km/sec). On the other hand, the Moon is just a tad bit more massive than the specks on a collision course.

So let’s say we wanted to change the Moon’s speed by JUST 1 MPH (0.0004 km/sec)—which is less than 1/2,000th its orbital speed—and we were going to do it by hurling Atlas V Centaur upper stages at the Moon. How many would we have to hurl its way? HEY, let’s give every person on planet Earth an opportunity to hurl one. Would that do it? Uh … nope. Every person on Earth (all nearly 7 billion of us) would each need to hurl 1 MILLION Atlas V Centaur upper stages at the Moon. I’d rather just hurl one and not worry about it. Rest easy, sleep well, and let’s see if we can find water on the Moon at the South Pole.

Another question people have been asking: Will the impact destroy the water we are looking for?

NASA answers that question on the LCROSS FAQ site:

The LCROSS impact will have the same effect on the water (if it is indeed there) as any other object that might naturally impact it. Most (>90%) of any water that is excavated by LCROSS will most likely return to nearby “cold traps”. The LCROSS impact is actually a slow impact and, thus, most of the material is not thrown very high upward, rather outward, adjacent to the impact site. Of the water that does get thrown upward, much of it will actually return to the Moon and eventually find its way back to the dark, cold craters. This is actually one possible way that the water was supplied in the first place: it was deposited following the impacts of comets and asteroids.

There is about 12,500 square km of permanently shadowed terrain on the Moon. If the top 1 meter of this area were to hold 1% (by mass) water, that would be equivalent to about 4.1 x 1011 liters of water! This is approximately 2% the volume of the Great Salt Lake in Utah. The LCROSS impact will excavate a crater approximately 20 meters in diameter, or about one-trillionth the total permanently shadowed area. It is safe to say the LCROSS impact will not have a lasting effect on lunar water, if it does indeed exist.

See our previous article on how to watch the LCROSS event.

Guide to Seeing the LCROSS Lunar Impact

LCROSS impact site. Credit: NASA

[/caption]
The LCROSS spacecraft is going to impact the Moon on Friday, October 9, and here’s your chance to watch the action, either just for fun, or to contribute to scientific observations. Whether you want to observe with your own equipment or watch the event on television or a webcast, below you’ll find all the information and links you should need to be a part of history. Amateur astronomers need a 10-inch or bigger telescope to make observations.

When: Following the latest trajectory correction maneuvers, the time of impact on Friday, October 9, 2009 is 11:31:19 UTC for the Centaur and 11:35:45 for LCROSS spacecraft (7:31:19 a.m. EDT and 7:35:45 a.m. EDT).

The impact time may be refined as the time for impact comes closer. You can check the LCROSS mission Facebook and Twitter pages for the latest updates (and we’ll try to post it here as soon as possible after any changes are announced.) Also check this NASA website for more information.

Where: both spacecraft are targeting Cabeus crater. The impact site coordinates are -84.675, 311.275 E. Click here to download the Targeting Coordinates, Timing, and Finder Charts presentation for detailed information. (Powerpoint presentation.)

New Mexico State University and Marshal Space Flight Center have made finder charts available based on similar illumination and libration that we expect to see on the night of the impact.

In general, here’s where to look: Start with the south pole (bottom edge) and look for the terminator, or where the sunlight and shadow merge. Here’s what the Moon should look like:

Moon oct 9

Zoom in with your telescope and identify the Cabeus craters. The target is in Cabeus proper, near the bottom of the Moon. Here’s what it should look like, along with a notated image:

Craters on the Moon's south pole.
Craters on the Moon's south pole.

What will I see? Based on an projections, there should be a visible ejecta cloud rising to 6Km above the lunar surface and crater wall. Latest estimates of the Cabeus proper crater impact site indicate the first two or three kilometers of that plume height (the brightest parts) may not be viewable from Earth, but that the plume will hopefully have crater wall shadow behind it to help us see it. Impact design location is to maximize the amount of this in sunlight, but variables here will determine how much of it is actually illuminated, and it may be that only the high power instruments will see good contrast. But we don’t know for sure.

“We expect the debris plumes to be visible through mid-sized backyard telescopes—10 inches and larger,” says Brian Day of NASA/Ames. Day is an amateur astronomer and the Education and Public Outreach Lead for LCROSS. “The initial explosions will probably be hidden behind crater walls, but the plumes will rise high enough above the crater’s rim to be seen from Earth.”

See this page for more information.

What is actually going on? The 5,000-pound (2,270-kilogram) Centaur is expected to slam into Cabeus at a sharp angle at a speed of 5,600 mph (9,000 kilometers per hour). If all goes according to schedule, the shepherding vehicle, carrying nine science payloads, will follow the Centaur’s plunge into the moon, and send back data live to Earth. The Centaur’s collision is expected to create a crater roughly 60 or 70 feet wide (20 meters wide) and perhaps as much as 16 feet (5 meters) deep, ejecting approximately 385 tons of lunar dust and soil — and hopefully some ice. In addition to recording the collision, the shepherding spacecraft weighing, 1,500-pounds (700-kilograms) will fly through the regolith plume thrown up by the collision, just before it too slams into the lunar surface some four minutes later, kicking up its own smaller plume of debris, all the while using its sensors to look for telltale signs of water.

What if it is cloudy where I live, or I live in Europe/Asia and it is daytime, or I don’t have a telescope to watch?

You can watch the event on NASA TV, and here’s where you can watch it online.

Slooh is having a webcast and will have two telescopes trained on the impact site.

The Exploratorium is also showing a webcast.

If you want to watch with other space enthusiasts, check out this list of people and organizations that are sponsoring observing parties.

Also, if you are in Mumbai, India the Nehru Planetarium there has a free viewing of the event at 4 pm IST. (thanks for pradx on Twitter for that info.)

If you are in the Pasadena area, JPL’s Von Karman Auditorium will have a public viewing, opening the gates 3:00 am. local time.

SMART -1 Updates Image for LCROSS Impact

Cabeus crater as seen by SMART-1. Credit: ESA

[/caption]
Since the LCROSS team reloaded and switched which lunar crater they are targeting for impact with the spacecraft and its upper stage of the Centaur rocket on October 9, the SMART-1 team has reloaded as well, and has released an updated image of the new crater. LCROSS (Lunar Crater Observation and Sensing Satellite) will search for water ice on the Moon by making two impacts into Cabeus crater at the lunar South Pole. The impacts are scheduled for 11:31:19 UTC and 11:35:45 UTC.

Previously, the SMART-1 team had released an image of Cabeus A, the original target crater.
Bjoern Grieger, the liaison scientist for SMART-1’s AMIE camera, and Bernard Foing, ESA SMART-1 Project Scientist, searched through SMART-1’s database for images of Cabeus, taken four years ago. The
SMART-1 images are at high resolution as the spacecraft was near its closest distance of 500 km from the South Pole.

The Cabeus crater interior is permanently shadowed, so ice lying inside the crater could be protected from the Sun’s harsh rays. LCROSS will send the upper stage Centaur rocket crashing into Cabeus and a
shepherd spacecraft will fly into the plume of dust generated and measure its properties before making a second impact with the lunar surface. Astronomers will observe both impacts using ground and space-based telescopes. The SMART-1 spacecraft also concluded its mission with a controlled bouncing impact on September 3, 2006. The event was observed with ground-based telescopes (a “dry run” for LCROSS), and the flash from the impact was detected at infrared wavelengths.

“The Cabeus topographic features as observed by SMART-1 vary greatly during the lunar rotation and the yearly seasons due to the polar grazing illumination conditions,” said Foing. “The floor of Cabeus
near LCROSS targets shows a number of small craters and seems old enough to have accumulated water ice delivered from comets and water-rich asteroids, and might have kept it frozen in its shadowed
area.”

Source: ESA

NASA Tests New Robotic Lander for Future Moon, Asteroid Missions

NASA’s Marshall Space Flight Center is testing a new robotic lunar lander test bed that will aid in the development of a new generation of multi-use landers for future robotic space exploration. Image Credit: NASA/MSFC/David Higginbotham

[/caption]

The best way to study the new-found water on the Moon would be with in-situ instruments. Since humans won’t be making any lunar landings for at least a decade, the next best option is robotic spacecraft. NASA’s Marshall Space Flight Center is developing and testing a new robotic lander to explore not only the Moon, but also asteroids and Mars. This design is definitely next generation: it’s bigger than any lander yet and MSFC is currently testing the all-important final of reaching the destination: landing.

“Specifically, what we are doing at Marshall is identifying the terminal – or the final – phase of landing, and designing a robotic lander to meet those needs,” said Brian Mulac, a test engineer at Marshall, quoted in an article in the Huntsville Times. “That last part is the highest risk of setting down on the moon.”

Of course, parachutes can’t be used for landing on the Moon or asteroids, since neither destination has an atmosphere, so thrusters are key for landing.

Large, oval-shaped tanks on the craft are used to store fuel for thrusters. Thrusters guide the lander, controlling the vehicle’s altitude and speed for landing. An additional thruster on this test vehicle, above, offsets the effect of Earth’s gravity so that the other thrusters can operate as they would in a lunar environment.

Just in case the tests don’t go as planned, a huge net is place under the lander to catch the vehicle and avoid damaging it.

As the saying goes, it’s not the fall that’s dangerous, but the sudden stop.

Landing on Mars requires a different architecture, such as the Mars Science Laboratory’s sky-crane, because of the pesky, thin atmosphere on the Red Planet. Read our previous article with Rob Manning of JPL about the issues of landing large payloads on Mars.

Sources: Huntsville Times, Gizmodo

LRO Provides Flashback to 1966

LROC image of Surveyor 1 on the Moon. NASA/GSFC/Arizona State University

[/caption]
On June 2, 1966 the Surveyor 1 spacecraft soft landed on the Moon, the first US spacecraft to set down on another body. Now, 43 years later the Lunar Reconnaissance Orbiter Camera has spotted this historic spacecraft, sitting silently on the Moon’s surface. The scene shows the spacecraft (annotated with an arrow, and the shadow shows up very well) just south of a 40 m diameter crater and about 110 m northwest of a 190 m diameter crater lined with boulders. The landing site is in the northeast corner of the Flamsteed Ring, a 100 km diameter impact crater almost completely buried by mare lavas such that all that remains exposed is the upper part of the original crater rim.

Surveyor 1 took its own picture on the Moon back in 1966. Credit: NASA
Surveyor 1 took its own picture on the Moon back in 1966. Credit: NASA

Surveyor 1 collected over 11,000 images, most during the first lunar day between landing and July 7, 1966. The spacecraft continued to operate until January 7, 1967. The Surveyor images demonstrated that the lunar surface was strong enough to support a landed vehicle or a human. The detailed images also indicated that the surface was composed of a granular material interpreted to be produced by the impact of various size meteors over billions of years.

And 43 years later we figured out some H20 and OH were also part of the mix.

See the entire image swath at the LROC site.

Source: LROC

LRO Takes Second, Closer Look at Apollo 11 Landing Site

LROC's second look at the Apollo 11 Landing Site [NASA/GSFC/Arizona State University]. Click for larger version.

. Click for larger version. “]
The Lunar Reconnaissance Orbiter Camera has taken a second look at the Apollo 11 landing site. These images were taken before LRO reached its science orbit of 50 km (31 miles) above the Moon, but the lighting is different from the previous images it took of this region, providing more detail and a whole new look at this historic site. This time the Sun was 28 degrees higher in the sky, making for smaller shadows and bringing out subtle brightness differences on the surface. The look and feel of the site has changed dramatically. See below for a close-up view.

.”]NAC image blown up two times showing Tranquility Base [NASA/GSFC/Arizona State University].
The astronaut path to the TV camera is visible, and you may even be able to see the camera stand (arrow). You can identify two parts of the Early Apollo Science Experiments Package (EASEP) – the Lunar Ranging Retro Reflector (LRRR) and the Passive Seismic Experiment (PSE). Neil Armstrong’s tracks to Little West crater (33 m diameter) are also discernable (unlabeled arrow). His quick jaunt provided scientists with their first view into a lunar crater.

Nice going LROC!

This article was edited on Sept. 30 to correct a mistake about LRO’s orbit at the time these images were taken.
See our previous article on the first round of LROC’s images of various Apollo landing sites.

Source: LROC

LCROSS Team Changes Target Crater for Impact

LCROSS Mission
Artist impression of LCROSS approaching the Moon. Credit: NASA

[/caption]
Based on new analysis of the latest lunar data, the science team for NASA’s Lunar Crater Observation and Sensing Satellite mission (LCROSS) decided to change the target crater for impact from Cabeus A to Cabeus (proper). The decision was based on a consensus that Cabeus shows, with the greatest level of certainty, the highest hydrogen concentrations at the south pole. The most current terrain models provided by JAXA’s Kaguya spacecraft and the LRO Lunar Orbiter Laser Altimeter (LOLA) was important in the decision process, as the latest models show a small valley in an otherwise tall Cabeus perimeter ridge, which will allow for sunlight to illuminate the ejecta cloud, making it easier to see from Earth.

The decisison was based on continued evaluation of all available data and consultation/input from members of the LCROSS Science Team and the scientific community, including impact experts, ground and space based observers, and observations from (LRO), Lunar Prospector (LP), Chandrayaan-1 and JAXA’s Kaguya spacecraft. This decision was prompted by the current best understanding of hydrogen concentrations in the Cabeus region, including cross-correlation between the latest LRO results and LP data sets.

As for the sunlight illuminating the ejecta cloud on Oct. 9, it should show up much better than previously estimated for Cabeus. While the ejecta does have to fly to higher elevations to be observed by Earth telescopes and observers, a shadow cast by a large hill along the Cabeus ridge, provides an excellent, high-contrast, back drop for ejecta and vapor measurements.

See this link for how to observe the impact from Earth. Eastern and central north America has the best chance of seeing the impact.

The LCROSS team concluded that Cabeus provided the best chance for meeting its mission goals. The team critically assessed and successfully advocated for the change with the Lunar Precursor Robotic Program (LPRP) office. The change in impact crater was factored into LCROSS’ most recent Trajectory Correction Maneuver, TCM7.

During the last days of the mission, the LCROSS team will continue to refine the exact point of impact within Cabeus crater to avoid rough spots, and to maximize solar illumination of the debris plume and Earth observations.

Source: LCROSS

SMART-1 Releases Image of LCROSS Impact Site

This image of LCROSS impact site Cabeus A was taken by the Advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 mission. The picture was taken from about 500 km, with small-field (about 50 km across) high resolution view (50 m/pixel). Image credit: B.Grieger, B.H. Foing & ESA/SMART-1/ AMIE team

[/caption]
ESA’s SMART-1 team has released an image of the future impact site of NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS). The SMART-1 team searched through their database to find images of Cabeus A, where LCROSS will search for water ice by making two impacts into this crater at the lunar south pole. The impacts are scheduled for 11:30 and 11:34 am UT on 9 October 2009. This image was taken four years ago by SMART-1, a spacecraft that ended its mission in 2006 by deliberately crashing to the Moon, similar to what LCROSS will do, hoping to exhume materials buried under the lunar surface, particularly water ice. “This is like gathering evidence for a Crash Scene Investigation, but before the action takes place,” said Bernard Foing, SMART-1 project scientist.

Cabeus A is permanently shadowed, so ice lying inside the crater could be protected from the Sun’s harsh rays. LCROSS will send the upper stage Centaur rocket crashing into Cabeus A and a shepherd spacecraft will fly into the plume of dust generated and measure its properties before making a second impact with the lunar surface. Astronomers will observe both impacts using ground and space-based telescopes. The SMART-1 spacecraft also concluded its mission with a controlled bouncing impact on 3 September 2006. The event was observed with ground-based telescopes and the flash from the impact was detected at infrared wavelengths.

Find out more about observing the LCROSS event here.

Foing and Bjoern Grieger, the liaison scientist for SMART-1’s AIMIE camera searched through SMART-1’s database for images of Cabeus A, taken four years ago at conditions where solar elevation and direction were similar to those of LCROSS impact. The SMART-1 image is at high resolution as the spacecraft was at its closest distance of 500 km from the South Pole.

“We are pleased to contribute these ESA SMART-1 observations of the LCROSS target site in order to help in the planning and interpretation of impact observations,” said Foing. “The coordination and exchange of information between lunar missions is an important step for future exploration of the Moon. Cooperation is vital if we are ever to see ‘villages’ of robotic landers and eventual lunar bases, as recommended by the International Lunar Exploration Working Group.”

Source: AlphaGalileo

Water on the Moon: What Does it Mean?

The distribution of water (light blue) around a small young crater on the Moon. Credits: ISRO/NASA/JPL-Caltech/USGS/Brown Univ.

[/caption]
The Moon has been turned upside down. Figuratively, of course. La Luna still orbits and phases as it always has, but we are now looking at the moon anew. From this day forward we know the chemistry of the Moon is different than what we have thought for decades, the geology might vary from what is in textbooks today, and the physics of how the solar wind interacts with a rocky body without an atmosphere has implications not yet fully investigated. So, what does this mean for our future human and robotic exploration of our closest companion in space?

“The Moon continues to surprise us,” said Carle Pieters, principal investigator for the Moon Mineralogy Mapper (M cubed) at Thursdays press conference. “Widespread water has been detected on the surface of the Moon. You have to think outside of the box on this. This is not what any of us expected decades ago.”

Immediately, space enthusiasts’ thoughts turn to how finding water on the Moon will make future exploration there so much easier.

“Scientists thought they knew fairly accurately what the surface of the moon was like and these results show that they didn’t – or at least not completely,” said Dr. Chris Welch, astronautics and space systems expert at Kingston University in London. “Finding so much more water could make living on the moon much easier in the future…If there is water on the moon – in whatever form – then we have a potential reservoir that could be used for drinking or to make into hydrogen and oxygen which could be used as rocket propellant. Also, of course, we could use the oxygen to breathe.”

But the message the scientists wanted everyone to take away from today’s press conference is that a combination of water (H2O) and hydroxyl (OH) that resides in upper millimeter of the lunar surface doesn’t actually amount to much. The average amount of water, if extracted, is about a quart (1 liter) of water per ton of surface soil, or about 16 ounces (.5 liters) of water might be present for every 1,000 pounds (450 kg) of surface soil near the moon’s poles. For soil near the equator, only about two tablespoons of water is believed to be present in every 1,000 pounds (450 kg).

“That is truly astounding, and generating much excitement,” said Jim Green, director of the Planetary Science Division at NASA. “But please keep in mind that even the driest deserts on the Earth have more water than are at the poles and the surfaces of the moon.”

So maybe this water on the Moon is not such a big deal.

But there’s still the very real possibility that there could be water ice underneath the regolith on the Moon or buried deep within craters at the poles. Fairly recent (within the past million years) impact craters on the moon were found to have ejecta “rich” with water and hydroxyl, according to M cubed data, which implies recently those molecules are buried under the surface.

Plus the scientists hinted at data showing Goldschmidt Crater at the Moon’s north pole could be filled with water ice.

The image on the left shows albedo, or the sunlight reflected from the surface of the moon. The image on the right shows where infrared light is absorbed in the characteristic manner that indicates the presence of water and hydroxyl molecules. That image shows that signature most strongly at the cool, high latitudes near the poles. The blue arrow indicates Goldschmidt crater, a large feldspar-rich region with a higher water and hydroxyl signature.  Image credit: ISRO/NASA/JPL-Caltech/Brown Univ.
The image on the left shows albedo, or the sunlight reflected from the surface of the moon. The image on the right shows where infrared light is absorbed in the characteristic manner that indicates the presence of water and hydroxyl molecules. That image shows that signature most strongly at the cool, high latitudes near the poles. The blue arrow indicates Goldschmidt crater, a large feldspar-rich region with a higher water and hydroxyl signature. Image credit: ISRO/NASA/JPL-Caltech/Brown Univ.

Additionally, what the scientists at today’s briefing found most astonishing about the new findings is that the water and hydroxyl show up at all latitudes, even at the equator in sunlight, where it is quite hot, and that there are a wide variety of hydroxyl bearing minerals at the surface. This is telling us there are some dynamic processes happening on a moon we thought to be bone dry and basically dead.

There appears to be a cycle of water being created and lost during a lunar day. Without an atmosphere, the moon is exposed to solar wind, which includes hydrogen ions. The hydrogen is able to interact with oxygen in lunar soil to create water molecules. The water appears to be created at night on the Moon, lost during the “hottest” parts of the two-week lunar day; then as it cools near evening, the cycle repeats itself. So, regardless of the type of terrain on the Moon, the entire surface of the moon will be hydrated at least for part of the day. The scientists said similar hydration effects may be present on any body in our solar system that doesn’t have an atmosphere, including asteroids and Mercury.

Those implications are huge for our explorations of other moons and worlds.

But back to the Moon. “Before this press conference, it was thought to be impossible to have water on the surface of the Moon in hot sunlight, especially on the surface at the equator,” said Roger Clark, with the M cubed and Cassini mission.

Small amounts of water and hydroxyl (blue) were detected on the surface of the moon at various locations. This image illustrates their distribution at high latitudes toward the poles.  Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS
Small amounts of water and hydroxyl (blue) were detected on the surface of the moon at various locations. This image illustrates their distribution at high latitudes toward the poles. Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS

Could water be a renewable resource on the Moon? If the water is constantly being created, could a devise be built to extract or collect the water? Easy availability of water would have an immense impact on any future human exploration on the Moon, be it brief sorties or permanent colonies.

This is intriguing,” said Pieters, “but we need to go back and re-determine this silicate surface and the vacuum around it. This is an environment we know very little about, and the physics is in its infancy.”

Discussing the implications, Pieters said first, the source of the water needs to be determined, whether it is actually from the solar wind, comets, meteorites, possibly an outgassing from the interior. “There are fundamental questions we need to understand about this silicate body,” she said. “Clearly this has to be a marriage between geology and space physics.”

And what about the “follow the water” mantra NASA has been following in regards to Mars? Could the “where there’s water, there’s life” hypothesis pertain to the Moon? Is there water on the Moon? While these new details about the Moon are groundbreaking, Welch does not believe the new findings show there is or could once have been life on the moon, but he says further research is needed. “There need to be more detailed science missions, preferably with astronauts landing on the moon, to analyse the soil in space.”

Certainly, the upcoming LCROSS impact on the Moon’s south pole will be watched with even greater interest. But what about future exploration?

Will this impel the Constellation Program to continue as planned with a return to the Moon? The Obama administration has some big decision to make in regards to NASA, and it’s hard to imagine this new information about the Moon won’t have some impact on the future path the space agency will take.

We can only hope this news brings more public and congressional interest in NASA’s future.