Next Generation Spacesuit Gets Tested in Weightlessness

Spacesuit tested in simulated gravity. Credit: Collins Aerospace

Considerable effort goes into the design of space suits and space agencies across the world are always working on improvements to enhance safety and mobility of the designs. NASA is now working with Collins Aerospace to develop their next generation spacesuit for the International Space Station. The new designs are tested extensively and recently, the new design was subjected to a ZeroG flight on board a diving aircraft. 

Continue reading “Next Generation Spacesuit Gets Tested in Weightlessness”

NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development

Graphic depiction of A revolutionary approach to interplanetary space travel: Studying Torpor in Animals for Space-health in Humans (STASH). Color images (top) and thermal images (bottom) show a model hibernation organism requiring low environmental temperatures for torpor study. Credit: Ryan Sprenger

In the next fifteen years, NASA, China, and SpaceX will make the next great leap in space exploration by sending the first crewed missions to Mars. This presents many challenges, not the least of which is distance. Even when they are closest to each other in their orbits (aka. when Mars is in Opposition), Mars can still be up to 55 million km (34 million mi) from Earth. Using conventional propulsion (chemical rockets), a one-way transit can last six to nine months, which works out to a total mission time (including surface operations) of about three years.

That’s a very long time for people to be in microgravity, not to mention exposed to solar and cosmic radiation. To address this, NASA is investigating advanced propulsion methods that will reduce transit times and hibernation technologies that will allow crews to sleep through most of their voyage. This year, the NASA Innovative Advanced Concepts (NIAC) program selected the Studying Torpor in Animals for Space-health in Humans (STASH) experiment, a new method for inducing torpor developed by Ryan Sprenger and colleagues at the California-based biotechnology firm Fauna Bio Inc.

Continue reading “NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development”

How Can Astronauts Maintain Their Bodies With Minimal Equipment?

NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED). Credits: NASA

Decades of research aboard the International Space Station (ISS) and other spacecraft in Low Earth Orbit (LEO) have shown that long-duration stays in microgravity will take a toll on human physiology. Among the most notable effects are muscle atrophy and bone density loss and effects on eyesight, blood flow, and cardiovascular health. However, as research like NASA’s Twin Study showed, the effects extend to organ function, psychological effects, and gene expression. Mitigating these effects is vital for future missions to the Moon, Mars, and other deep-space destinations.

To reduce the impact of microgravity, astronauts aboard the ISS rely on a strict regiment of resistance training, proper diet, and cardiovascular exercise to engage their muscles, bones, and other connective tissues that comprise their musculoskeletal systems. Unfortunately, the machines aboard the ISS are too large and heavy to bring aboard spacecraft for long-duration spaceflights, where space and mass requirements are limited. To address this, NASA is investigating whether exercise regimens that rely on minimal or no equipment could provide adequate physical activity.

Continue reading “How Can Astronauts Maintain Their Bodies With Minimal Equipment?”

Earth's Smallest Flowering Plant Can Handle 20X Earth's Gravity

Confocal Laser Scanning Microscope image of approximately 1mm-diameter watermeal plants after hypergravity exposure. ESA.

Astronauts need to eat, and they need to breathe. That means, for long-duration missions, they are going to need to bring plants with them. But not all plants are created equal, and not all can survive the harsh conditions of space. One that might thrive on long spacefaring voyages also happens to be the smallest flowering plant on Earth.

Continue reading “Earth's Smallest Flowering Plant Can Handle 20X Earth's Gravity”

Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space

The centrifuge at the MEDES center. Credit: MEDES–R. Gaboriaud

They’re affectionately known as “pillownauts,” volunteers who commit to spending weeks in bed to advance research into astronaut health. While bedridden, the pillownauts will lie with their heads tilted at 6° below the horizontal with their feet up to increase blood flow to their heads. They also perform work-related tasks, are subject to regular medical exams, and take their meals, showers, and bathroom breaks, all while remaining in bed. The purpose of this research is to simulate the effects of weightlessness on the human body, including muscle atrophy, bone density loss, and cognitive effects.

The European Space Agency (ESA) recently kicked off another round of pillownaut research, the Bed Rest with Artificial gravity and Cycling Exercise (BRACE) study, at the Institute for Space Medicine and Physiology (MEDES) in Toulouse, France. For this study, twelve volunteers will remain inclined (with their heads below their feet) for sixty days and exercise using cycles adapted to their beds and centrifuges that simulate gravity. Beyond measuring the effects of microgravity on astronaut health, this study also aims to measure the effectiveness of countermeasures used to address them.

Continue reading “Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space”

What Can Be Done to Help Astronaut Vision in Space?

Astronauts Kate Rubins (left) and Jeff Williams (right) looking out of the ISS' cupola at a SpaceX Dragon supply spacecraft. Until recently, the effects of long-duration missions on eyesight was something of a mystery. Credit: NASA

Spaceflight takes a serious toll on the human body. As NASA’s Twin Study demonstrates, long-duration stays in space lead to muscle and bone density loss. There are also notable effects on the cardiovascular, central nervous, and endocrine systems, as well as changes in gene expression and cognitive function. There’s also visual impairment, known as Spaceflight-Associated Neuro-ocular Syndrome (SANS), which many astronauts reported after spending two months aboard the International Space Station (ISS). This results from increased intracranial pressure that places stress on the optic nerve and leads to temporary blindness.

Researchers are looking for ways to diagnose and treat these issues to prepare for future missions that will involve long-duration stays beyond Earth and transits in deep space. A cross-disciplinary team of researchers led by the University of Western Australia (UWA) has developed a breakthrough method for measuring brain fluid pressure that could reduce the risk of SANS for astronauts on long-duration spaceflights. This research could have applications for the many efforts to create a human presence on the Moon in this decade and crewed missions to Mars in the next.

Continue reading “What Can Be Done to Help Astronaut Vision in Space?”

Study Shows How Cells Could Help Artemis Astronauts Exercise

NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV). Credit: NASA

In 2033, NASA and China plan to send the first crewed missions to Mars. These missions will launch every two years when Earth and Mars are at the closest points in their orbits (Mars Opposition). It will take these missions six to nine months to reach the Red Planet using conventional technology. This means that astronauts could spend up to a year and a half in microgravity, followed by months of surface operations in Martian gravity (roughly 40% of Earth gravity). This could have drastic consequences for astronaut health, including muscle atrophy, bone density loss, and psychological effects.

Aboard the International Space Station (ISS), astronauts maintain a strict exercise regimen to mitigate these effects. However, astronauts will not have the same option while in transit to Mars since their vehicles (the Orion spacecraft) have significantly less volume. To address this challenge, Professor Marni Boppart and her colleagues at the Beckman Institute for Advanced Science and Technology are developing a process using regenerative cells. This work could help ensure that astronauts arrive at Mars healthy, hearty, and ready to explore!

Continue reading “Study Shows How Cells Could Help Artemis Astronauts Exercise”

Want to Stay Healthy in Space? Then you Want Artificial Gravity

A close up of three fruit flies, used for scientific research both on Earth and in space. Credits: NASA Ames Research Center/Dominic Hart

Space travel presents numerous challenges, not the least of which have to do with astronaut health and safety. And the farther these missions venture from Earth, the more significant they become. Beyond Earth’s protective atmosphere and magnetosphere, there’s the threat of long-term exposure to solar and cosmic radiation. But whereas radiation exposure can be mitigated with proper shielding, there are few strategies available for dealing with the other major hazard: long-term exposure to microgravity.

Aboard the International Space Station (ISS), astronauts rely on a strict regimen of exercise and resistance training to mitigate the physiological effects. These include muscle atrophy, bone density loss, organ function, eyesight, and effects on cardiovascular health, gene expression, and the central nervous system. But as a recent NASA study revealed, long-duration missions to Mars and other locations in deep space will need to be equipped with artificial gravity. This study examined the effects of microgravity on fruit flies aboard the ISS and demonstrated artificial gravity provides partial protection against those changes.

Continue reading “Want to Stay Healthy in Space? Then you Want Artificial Gravity”

Many Astronauts Never Recover all of their Bone Density after Returning to Earth

In his book, Endurance, astronaut Scott Kelly described the arduous task of readjusting to life on Earth after spending a year in space. As part of NASA’s Twins Study, Kelly lived and worked aboard the International Space Station (ISS) while his identical twin (astronaut Mark Kelly) remained on Earth. While the results of this study revealed how prolonged exposure to microgravity could lead to all manner of physiological changes, the long and painful recovery Kelly described in his book painted a much more personal and candid picture.

As it turns out, astronauts who spend extended periods in space may never fully recover. At least, that is the conclusion reached by an international team led by the University of Calgary after they assessed the bone strength of multiple astronauts before and after they went to space. They found that after twelve months of recovery, the astronaut’s bones had not regenerated completely. These findings could have significant implications for proposed future missions, many of which involve long-duration stays in space, on the Moon, and Mars.

Continue reading “Many Astronauts Never Recover all of their Bone Density after Returning to Earth”