Can Meteor Showers Be Dangerous to Spacecraft?

Leonids meteor shower

We’ve all read the advice, during a meteor shower there is no equipment needed. All you need to do is lay back and wonder at one of the most spectacular sights the universe has to offer. That’s about it though and while you lay back on a lounger and watch it really can be a wonderfully grounding and relaxing experience. Unless you happen to be on National TV and miss a meteor behind your head and just tell the world there’s nothing to see. Not that I’m bitter about that of course!

Continue reading “Can Meteor Showers Be Dangerous to Spacecraft?”

2024 Perseids Light Up the August Sky

Meteors
The 2023 Perseids, as seen from Sequoia National Forest. Credit: NASA/Preston Dyches

That ‘Old Faithful’ of meteor showers the Perseids peak early next week.

Great ready for one of the surefire astronomical events of 2024, as the peak for the Perseid meteors arrives next week.

To be sure, the Perseids aren’t the most intense annual meteor shower of the year; in the first half of the 20th century, that title now goes to the December Geminids. What the Perseids do have going for them is timing: they typically arrive in early August, before the academic year starts and during prime camping season, which finds lots of folks out under warm summer skies.

Continue reading “2024 Perseids Light Up the August Sky”

The Geminids Will be Peaking on December 14th. They’re Usually the Most Active Meteor Shower Every Year

Meteor showers are a great way to share a love of astronomy with those who might not be as familiar with it. Almost everyone loves watching streaks of light flash across the sky, but usually, it’s so intermittent that it can be frustrating to watch. That’s not the case for the next few weeks, though, as the annual Geminid meteor shower is underway until December 24th.

Continue reading “The Geminids Will be Peaking on December 14th. They’re Usually the Most Active Meteor Shower Every Year”

Astronomy Cast Ep. 452: Summer Observing Challenges

Summer is almost here, and for the northern hemisphere, that means warm nights for observing. But what to observe? We’re here with a list of events and targets for you to enjoy over the summer. Get your calendars handy, and start organizing some events with your friends, and then get out there!

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Explody Eta Aquarid Meteor Caught in the Act

Composite image taken at Mount Bromo in Indonesia during the peak night of Eta Aquarid meteor shower. Credit and copyright: Justin Ng.

An Eta Aquarid meteor captured on video by astrophotographer Justin Ng shows an amazing explodingred meteor and what is known as a persistent train — what remains of a meteor fireball in the upper atmosphere as winds twist and swirl the expanding debris.

The meteor pierced through the clouds and the vaporized “remains” of the fireball persisted for over 10 minutes, Justin said. It lasts just a few seconds in the time-lapse.

Here’s the video:

Justin took this footage during an astrophotography tour to Mount Bromo in Indonesia, where he saw several Eta Aquarid meteors. The red, explody meteor occurred at around 4:16 am,local time. The Small Magellanic Cloud is also visible just above the horizon on the left.

Persistent trains occur when a meteoroid blasts through the air, ionizes gases in our atmosphere. Until recently, these have been difficult to study because they are rather elusive. But lately, with the widespread availability of ultra-fast lenses and highly sensitive cameras, capturing these trains is becoming more common, much to the delight of astrophotography fans!

Mount Bromo, 2,329 meters (7600 ft.) high is an active volcano in East Java, Indonesia.

Check out more of Justin’s work at his website, on Twitter, Facebook or G+.

6 May 2017 – Eta Aquarid Captured at Mount Bromo (4K Timelapse) from Justin Ng Photo on Vimeo.

‘Explody’ Taurid Meteors Produce Persistent Trains

A bright Taurid meteor falls over Deadfall Basin, near the base of Mount Eddy in California. Credit and copyright: Brad Goldpaint.

“The landscape was just at the verge of trying to silently explode with vibrant colors of red, gold and oranges,” said photographer Brad Goldpaint as he described the autumn view during his hike to Deadfall Basin in California to set up his cameras to try and capture a few Taurid meteors.

But the landscape wasn’t the only thing about to explode.

Later that night Brad captured a few “exploding” meteors that produced what are called persistent trains: what remains of a meteor fireball in the upper atmosphere as winds twist and swirl the expanding debris.

Brad created a time-lapse video from the event and slowed down the footage to highlight the trains.

Persistent trains have been difficult to study because they are rather elusive. But lately, with the widespread availability of ultra-fast lenses and highly sensitive cameras, capturing these trains is becoming more common.

Phil Plait still has the best description out there of what happens when persistent trains are produced:

As a meteoroid (the actual solid chunk of material) blasts through the air, it ionizes the gases, stripping electrons from their parent atoms. As the electrons slowly recombine with the atoms, they emit light — this is how neon signs glow, as well as giant star-forming nebulae in space. The upper-level winds blowing that high (upwards of 100 km/60 miles) create the twisting, fantastic shapes in the train.

The consensus among our Universe Today Flickr pool photographers who posted images of the Taurids this year is that the 2015 Taurids weren’t entirely remarkable. Most astrophotgraphers reported they saw one or two per hour. Here are a few more Taurid meteor shower images from our photographer friends:

A bright Taurid fireball on November 9, 2015. Credit and copyright: Mark Sansom.
A bright Taurid fireball on November 9, 2015. Credit and copyright: Mark Sansom.

Two Taurid meteors from the November 2015 shower, on November 10, 2015. Credit and copyright: Alan Dyer.
Two Taurid meteors from the November 2015 shower, on November 10, 2015. Credit and copyright: Alan Dyer.

A bright Taurid meteor is reflected in a lake in Illinois. Credit and copyright: Kevin Palmer.
A bright Taurid meteor is reflected in a lake in Illinois. Credit and copyright: Kevin Palmer.

Midway Between Storms: Our Guide to the 2014 Leonid Meteors

Credit:

If there’s one meteor shower that has the potential to bring on a storm of epic proportions, it’s the Leonids. Peaking once every 33 years, these fast movers hail from the Comet 55P Temple-Tuttle, and radiate from the Sickle, or backwards “question mark” asterism in the constellation Leo.  And although 2014 is an “off year” in terms of storm prospects, it’s always worth taking heed these chilly November mornings as we await the lion’s roar once again.

The prospects: 2014 sees the expected peak of the Leonids arriving around 22:00 Universal Time (UT) which is 5:00 PM EST. Locally speaking, a majority of meteor showers tend to peak in the early AM hours past midnight, as the observer’s location turns forward facing into the oncoming meteor stream. Think of driving in an early November snowstorm, with the car being the Earth and the flakes of snow as the oncoming meteors. And if you’ve (been fortunate enough?) to have never seen snow, remember that it’s the front windshield of the car going down the highway that catches all of the bugs!

This all means that in 2014, the Asian Far East will have an optimal viewing situation for the Leonids, though observers worldwide should still be vigilant. Of course, meteor showers never read online prognostications such as these, and often tend to arrive early or late.  The Leonids also have a broad range of activity spanning November 6th through November 30th.

Credit: Starry Night Education Software.
The November path of the radiant of the 2014 Leonids. Credit: Starry Night Education Software.

The predicted ideal Zenithal Hourly Rate for 2014 stands at about 15, which is well above the typical background sporadic rate, but lower than most years. Expect the actual sky position of the radiant and light pollution to lower this hourly number significantly. And speaking of light pollution, the Moon is a 21% illuminated waning crescent on the morning of November 17th, rising at around 2:00 AM local in the adjacent constellation of Virgo.

The Leonids can, once every 33 years, produce a storm of magnificent proportions. The history of Leonid observation may even extend back as far as 902 A.D., which was recorded in Arab annals as the “Year of the Stars.”

But it was the morning of November 13th, 1833 that really gained notoriety for the Leonids, and really kicked the study of meteor showers into high gear.

Credit:
A depiction of the 1868 Leonids by Étienne Léopold Trouvelot from The Trouvelot Astronomical Drawings, 1881. Image in the Public Domain.

The night was clear over the U.S. Eastern Seaboard, and frightened townsfolk were awakened to moving shadows on bedroom walls. Fire was the first thing on most people’s minds, but they were instead confronted with a stunning and terrifying sight: a sky seeming to rain stars in every direction. Churches quickly filled up, as folks reckoned the Day of Judgment had come.  The 1833 Leonid storm actually made later historical lists as one of the 100 great events in the United States for the 19th century. The storm has also been cited as single-handedly contributing to the religious fundamentalist revivals of the 1830s. Poet Walt Whitman witnessed the 1833 storm, and the song The Stars Fell on Alabama by Frank Perkins was inspired by the event as well.

Wikimedia Commons image in the Public Domain.
Live in Alabama? Then you may well possess a license plate that commemorates the 1833 Leonid Storm. Wikimedia Commons image in the Public Domain.

But not all were fearful. Astronomer Denison Olmsted was inspired to study the radiants and paths of meteor streams after the 1833 storm, and founded modern meteor science. The Leonids continued to produce storms at 33 year intervals, and there are still many observers that recall the spectacle that the Leonids produced over the southwestern U.S. back 1966, with a zenithal hourly rate topping an estimated 144,000 per hour!

We also have a personal fondness for this shower, as we were fortunate enough to witness the Leonids from the dark desert skies of Kuwait back in 1998. We estimated the shower approached a ZHR of about 900 towards sunrise, as a fireballs seemed to light up the desert once every few seconds.

Created using Stellarium.
The situation at 22:00 UT on November 17th, noting the direction of the Earth’s motion with relation to the predicted peak of the 2014 Leonid stream. Created using Stellarium.

The Leonids have subsided in recent years, and have fallen back below enhanced rates since 2002. Here’s the most recent ZHR levels as per the International Meteor Organization:

2009: ZHR=80.

2010: ZHR=32.

2011: ZHR=22.

2012: ZHR=48.

Note: 2013 the shower was, for the most part, washed out by the Full Moon.

But this year is also special for another reason.

Note that the 2014-2015 season marks the approximate halfway mark to an expected Leonid outburst around 2032. Comet 55P Tempel-Tuttle reaches perihelion on May 20th, 2031, and if activity in the late 1990s was any indication, we expect the Leonids to start picking up again around 2030 onward.

A simulated storm on the morning of November 17th, 2032. Credit: Stellarium.
A simulated Leonid storm on the morning of November 17th, 2032. Credit: Stellarium.

Observing meteors is as simple as laying back and looking up. Be sure to stay warm, and trace the trail of any suspect meteor back to the Sickle to identify it as a Leonid. The Leonid meteors have one of the fastest approach velocities of any meteor stream at 71 kilometres per second, making for quick, fleeting passages in the pre-dawn sky. Brighter bolides may leave lingering smoke trails, and we like to keep a set of binoculars handy to examine these on occasion.

Looking to do some real science? You can document how many meteors you see per hour from your location and send this in to the International Meteor Organization, which tabulates and uses these volunteer counts to characterize a given meteor stream.

Leonids Credit: NASA
The 1997 Leonids as seen from space by the MSX satellite. Credit: NASA/JPL

And taking images of Leonid meteors is as simple as setting your DSLR camera on a tripod and taking long exposure images of the night sky. Be sure to use the widest field of view possible, and aim the camera about 45 degrees away from the radiant to nab meteors in profile. We generally shoot 30 second to 3 minute exposures in series, and don’t be afraid to experiment with manual F-stop/ISO combinations to get the settings just right for the local sky conditions. And be sure to carefully review those shots on the “big screen” afterwards… nearly every meteor we’ve caught in an image has turned up this way.

Don’t miss the 2014 Leonids. Hey, we’re half way to the start of the 2030 “storm years!”

More Camelopardalids: Persistent Trains and that Satellite Fuel Dump Cloud

A Camelopardalids meteor captured at Jebel Al Jais mountain on the morning of May 24, 2014. Credit and copyright: Justin Ng.

The first ever Camelopardalids Meteor Shower ended up being more of a drizzle than a shower, said astrophotographer John Chumack. “The new shower had very few meteors per hour, I estimated about 8 to 12 per hour, most were faint, but it did produce a few bright ones, as seen captured by my Meteor Video Camera network at my backyard observatory in Dayton Ohio.”

The above image is by Justin Ng who went to Jebel Al Jais mountain near Dubai to capture the meteor shower.

As our own Bob King reported the morning after — with several images and apt descriptions of the shower — the peak activity seem to occur around 2:00am to 4:00am EST (0700 to 900 UT).

There was a lot of buzz about a weird gigantic persistent train that occurred early on (about 1 am EST) and it ended up being a cameo appearance by the Advanced Land Observation Satellite a new Japanese mapping satellite, and a fuel dump from a booster stage of the satellite’s launch vehicle. Read more about it at Bob’s article, and see some images of it below.

Also, see a great video capture of a persistent train, shot by astrophotographer Gavin Heffernan:

We’ve had some more images come in via email and on our Flickr page

Persistent trains are the vaporized remains of the tiny meteoroid. The dust is blown around by upper level winds in Earth’s atmosphere.

Here’s a great time-lapse of the plume from the fuel dump. Astrophotographer Alan Dyer called it a “strange glow of light that moved across the northern sky… What I thought was an odd curtain of slow-moving, colourless aurora — and I’ve seen those before — has many people who also saw it suspecting it was a glow from a fuel dump from an orbiting satellite.

This short time-lapse of 22 frames covers about 22 minutes starting at 11:59 pm MDT on May 23 Each frame is a 60-second exposure taken at 2 second intervals, played back at one frame per second.

A Camelopardolids Meteor on May 24, 2014. Credit and copyright: Stephen Rahn.
A Camelopardolids Meteor on May 24, 2014. Credit and copyright: Stephen Rahn.

Camelopardalids Meteor zips past the Big Dipper and Mars on May 24, 2014. Credit and copyright: John Chumack.
Camelopardalids Meteor zips past the Big Dipper and Mars on May 24, 2014. Credit and copyright: John Chumack.

Here’s a video compilation put together by John Chumack:

Closeup of one frame of a timelapse session containing what appears to be a meteor from the  Camelopardalids meteor shower. Credit and copyright: DaretheHair on Flickr.
Closeup of one frame of a timelapse session containing what appears to be a meteor from the
Camelopardalids meteor shower. Credit and copyright: DaretheHair on Flickr.

An animated gif of the strange ‘cloud’ plume from a fuel dump from the launch of a new Japanese mapping satellite. Credit and copyright: DaretheHair.

We’ll add more images as they come in!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Astrophotos: Views of the Delta Aquarid Meteor Shower

Delta Aquarid Meteors seen from Dayton, Ohio on July 30, 2013. Credit and copyright: John Chumack.

Did those of you in the northern hemisphere have a chance to look for the Delta Aquarid meteors? Ever-faithful astronomer and astrophotographer John Chumack captured this view overnight from his observatory near Dayton, Ohio. Can you see the two meteors in this frame?

Below is another shot from John taken on July 29 using his Meteor Video Camera Network, and he captured about half a dozen bright ones, including one meteor through the clouds.

A Delta Aquarid meteor shows up through the clouds on July 29, 2013. Credit and copyright: John Chumack.
A Delta Aquarid meteor shows up through the clouds on July 29, 2013. Credit and copyright: John Chumack.

As our own David Dickenson said in his recent “how to” post on observing the Delta Aquarids, this meteor shower “can serve as a great “dry run” for the Perseids in a few weeks. You don’t need any specialized gear, simply find a dark site, block the Moon behind a building or hill, and watch.”

And as far as photographing them, David says that technique is “similar to doing long exposures of star trails.”

Simply aim your tripod mounted DSLR camera at a section of sky and take a series of time exposures about 1-3 minutes long to reveal meteor streaks. Images of Delta Aquarids seem elusive, almost to the point of being mythical. An internet search turns up more blurry pictures of guys in ape suits purporting to be Bigfoot than Delta Aquarid images… perhaps we can document the “legendary Delta Aquarids” this year?

Watch for the Delta Aquarid Meteors This Weekend

The Southern Delta Aquarid radiant, looking southeast at 2AM local from latitude 30 degrees north on the morning of July 30th. (Created by the author in Starry Night).

The meteor shower drought ends this weekend.

The northern summer hemisphere meteor season is almost upon us. In a few weeks’ time, the Perseids — the “Old Faithful” of meteor showers — will be gracing night skies worldwide.

But the Perseids have an “opening act”- a meteor shower optimized for southern hemisphere skies known as the Delta Aquarids.

This year offers a mixed bag for this shower. The Delta Aquarids are expected to peak on July 30th and we should start seeing some action from this shower starting this weekend.

The Moon, however, also reaches Last Quarter phase the day before the expected peak of the Delta Aquarids this year on July 29th at 1:43PM EDT/17:43 Universal Time (UT). This will diminish the visibility of all but the brightest meteors in the early morning hours of July 30th.

A cluster of meteor shower radiants also lies nearby. The Eta Aquarids emanate from a point near the asterism known as the “Water Jar” in the constellation Aquarius around May 5th. Another nearby but weaker shower known as the Alpha Capricornids are also currently active, with a zenithal hourly rate (ZHR) approaching the average hourly sporadic rate of 5. And speaking of which, the antihelion point, another source of sporadic meteors, is nearby in late July as well in eastern Capricornus.

The Delta Aquarids are caused by remnants of Comet 96P/Machholz colliding with Earth’s atmosphere. The short period comet was only discovered in 1986 by amateur astronomer Donald Machholz. Prior to this, the source of the Delta Aquarids was a mystery.

The Delta Aquarids have a moderate atmospheric entry velocity (for a meteor shower, that is) around an average of 41 kilometres a second. They also have one of the lowest r values of a major shower at 3.2, meaning that they produce a disproportionately higher number of fainter meteors, although occasional brighter fireballs are also associated with this shower.

Image of an early confirmed Delta Aquarid captured by the UK Fireball Network (@ on Twitter) captured by their Ash Vale North camera.
Image of an early confirmed Delta Aquarid by the UK Meteor Network (@UKMeteorNetwork on Twitter) captured by their Ash Vale North camera on July 17th, 2013. (Credit: Richard Kacerek & United Kingdom Meteor Observation Network, used with permission).

The Delta Aquarids are also one the very few showers with a southern hemisphere radiant. It’s somewhat of a mystery as to why meteor showers seem to favor the northern hemisphere. Of the 18 major annual meteor showers, only four occur below the ecliptic plane and three (the Alpha Capricornids, and the Eta and Delta Aquarids) approach the Earth from south of the equator. A statistical fluke, or just the product of the current epoch?

In fact, the Delta Aquarids have the most southern radiant of any major shower, with a radiant located just north of the bright star Fomalhaut in the constellation Piscis Austrinus near Right Ascension 339 degrees and Declination -17 degrees.  Researchers have even broken this shower down into two distinct northern and southern radiants, although it’s the southern radiant that is the more active during the July season.

Together, this loose grouping of meteor shower radiants in the vicinity is known as the Aquarid-Capricornid complex.  The Delta Aquarids are active from July 14th to August 18th, and unlike most showers, have a very broad peak. This is why you’ll see sites often quote the maximum for the shower at anywhere from July 28th to the 31st. In fact, you may just catch a stray Delta Aquarid while on vigil for the Perseids in a few weeks!

The shower was first identified by astronomer G.L. Tupman, who plotted 65 meteors associated with the stream in 1870. Observations of the Delta Aquarids were an off-and-on affair throughout the early 20th century, with many charts erroneously listing them as the “Beta Piscids”. The separate northern and southern radiants weren’t even untangled until 1950. The advent of radio astronomy made more refined observations of the Delta Aquarids possible. In 1949, Canadian astronomer D.W.R. McKinley based out of Ottawa, Canada identified both streams and pinned down the 41 km per second velocity that’s still quoted for the shower today.

Further radio studies of the shower were carried out at Jodrell Bank in the early 1950’s, and the shower gave strong returns in the early 1970’s for southern hemisphere observers even with the Moon above the horizon, with ZHRs approaching 40. The best return for the Southern Delta Aquarids in recent times is listed by the International Meteor Organization as a ZHR of about 40 on the morning of July 28th, 2009.

A study of the Delta Aquarids in 1963 by Fred Whipple and S.E. Hamid reveal striking similarities between the Delta Aquarids and the January Quadrantids & daytime Arietid stream active in June. They note that the orbital parameters of the streams were similar about 1,400 years ago, and the paths are thought to have diverged due to perturbations from the planet Jupiter.

Observing the Delta Aquarids can serve as a great “dry run” for the Perseids in a few weeks. You don’t need any specialized gear, simply find a dark site, block the Moon behind a building or hill, and watch.

Photographing meteors is similar to doing long exposures of star trails. Simply aim your tripod mounted DSLR camera at a section of sky and take a series of time exposures about 1-3 minutes long to reveal meteor streaks. Images of Delta Aquarids seem elusive, almost to the point of being mythical. An internet search turns up more blurry pictures of guys in ape suits purporting to be Bigfoot than Delta Aquarid images… perhaps we can document the “legendary Delta Aquarids” this year?

– Read more of the fascinating history of the Delta Aquarids here.

– Seen a meteor? Be sure to tweet it to #Meteorwatch.

– The IMO wants your meteor counts and observations!