Who was Max Planck?

Imagine if you will that your name would forever be associated with a groundbreaking scientific theory. Imagine also that your name would even be attached to a series of units, designed to performs measurements for complex equations. Now imagine that you were German who lived through two World Wars, won the Nobel Prize for physics, and outlived many of your children.

If you can do all that, then you might know what it was like to be Max Planck, the German physicist and founder of quantum theory. Much like Galileo, Newton, and Einstein, Max Planck is regarded as one of the most influential and groundbreaking scientists of his time, a man whose discoveries helped to revolutionized the field of physics. Ironic, considering that when he first embarked on his career, he was told there was nothing new to be discovered!

Early Life and Education:

Born in 1858 in Kiel, Germany, Planck was a child of intellectuals, his grandfather and great-grandfather both theology professors and his father a professor of law, and his uncle a judge. In 1867, his family moved to Munich, where Planck enrolled in the Maximilians gymnasium school. From an early age, Planck demonstrated an aptitude for mathematics, astronomy, mechanics, and music.

Illustration of Friedrich Wilhelms University, with the statue of Frederick the Great (ca. 1850). Credit: Wikipedia Commons/A. Carse

He graduated early, at the age of 17, and went on to study theoretical physics at the University of Munich. In 1877, he went on to Friedrich Wilhelms University in Berlin to study with physicists Hermann von Helmholtz. Helmholtz had a profound influence on Planck, who he became close friends with, and eventually Planck decided to adopt thermodynamics as his field of research.

In October 1878, he passed his qualifying exams and defended his dissertation in February of 1879 – titled “On the second law of thermodynamics”. In this work, he made the following statement, from which the modern Second Law of Thermodynamics is believed to be derived: “It is impossible to construct an engine which will work in a complete cycle, and produce no effect except the raising of a weight and cooling of a heat reservoir.”

For a time, Planck toiled away in relative anonymity because of his work with entropy (which was considered a dead field). However, he made several important discoveries in this time that would allow him to grow his reputation and gain a following. For instance, his Treatise on Thermodynamics, which was published in 1897, contained the seeds of ideas that would go on to become highly influential – i.e. black body radiation and special states of equilibrium.

With the completion of his thesis, Planck became an unpaid private lecturer at the Freidrich Wilhelms University in Munich and joined the local Physical Society. Although the academic community did not pay much attention to him, he continued his work on heat theory and came to independently discover the same theory of thermodynamics and entropy as Josiah Willard Gibbs – the American physicist who is credited with the discovery.

Professors Michael Bonitz and Frank Hohmann, holding a facsimile of Planck’s Nobel prize certificate, which was given to the University of Kiel in 2013. Credit and Copyright: CAU/Schimmelpfennig

In 1885, the University of Kiel appointed Planck as an associate professor of theoretical physics, where he continued his studies in physical chemistry and heat systems. By 1889, he returned to Freidrich Wilhelms University in Berlin, becoming a full professor by 1892. He would remain in Berlin until his retired in January 1926, when he was succeeded by Erwin Schrodinger.

Black Body Radiation:

It was in 1894, when he was under a commission from the electric companies to develop better light bulbs, that Planck began working on the problem of black-body radiation. Physicists were already struggling to explain how the intensity of the electromagnetic radiation emitted by a perfect absorber (i.e. a black body) depended on the bodies temperature and the frequency of the radiation (i.e., the color of the light).

In time, he resolved this problem by suggesting that electromagnetic energy did not flow in a constant form but rather in discreet packets, i.e. quanta. This came to be known as the Planck postulate, which can be stated mathematically as E = hv – where E is energy, v is the frequency, and h is the Planck constant. This theory, which was not consistent with classical Newtonian mechanics, helped to trigger a revolution in science.

A deeply conservative scientists who was suspicious of the implications his theory raised, Planck indicated that he only came by his discovery reluctantly and hoped they would be proven wrong. However, the discovery of Planck’s constant would prove to have a revolutionary impact, causing scientists to break with classical physics, and leading to the creation of Planck units (length, time, mass, etc.).

From left to right: W. Nernst, A. Einstein, M. Planck, R.A. Millikan and von Laue at a dinner given by von Laue in 1931. Credit: Wikipedia Commons
From left to right: W. Nernst, A. Einstein, M. Planck, R.A. Millikan and von Laue at a dinner given by von Laue in Berlin, 1931. Credit: Wikipedia Commons

Quantum Mechanics:

By the turn of the century another influential scientist by the name of Albert Einstein made several discoveries that would prove Planck’s quantum theory to be correct. The first was his theory of photons (as part of his Special Theory of Relativity) which contradicted classical physics and the theory of electrodynamics that held that light was a wave that needed a medium to propagate.

The second was Einstein’s study of the anomalous behavior of specific bodies when heated at low temperatures, another example of a phenomenon which defied classical physics. Though Planck was one of the first to recognize the significance of Einstein’s special relativity, he initially rejected the idea that light could made up of discreet quanta of matter (in this case, photons).

However, in 1911, Planck and Walther Nernst (a colleague of Planck’s) organized a conference in Brussels known as the First Solvav Conference, the subject of which was the theory of radiation and quanta. Einstein attended, and was able to convince Planck of his theories regarding specific bodies during the course of the proceedings. The two became friends and colleagues; and in 1914, Planck created a professorship for Einstein at the University of Berlin.

During the 1920s, a new theory of quantum mechanics had emerged, which was known as the “Copenhagen interpretation“. This theory, which was largely devised by German physicists Neils Bohr and Werner Heisenberg, stated that quantum mechanics can only predict probabilities; and that in general, physical systems do not have definite properties prior to being measured.

Photograph of the first Solvay Conference in 1911 at the Hotel Metropole in Brussels, Belgium. Credit: International Solvay Institutes/Benjamin Couprie

This was rejected by Planck, however, who felt that wave mechanics would soon render quantum theory unnecessary. He was joined by his colleagues Erwin Schrodinger, Max von Laue, and Einstein – all of whom wanted to save classical mechanics from the “chaos” of quantum theory. However, time would prove that both interpretations were correct (and mathematically equivalent), giving rise to theories of particle-wave duality.

World War I and World War II:

In 1914, Planck joined in the nationalistic fervor that was sweeping Germany. While not an extreme nationalist, he was a signatory of the now-infamous “Manifesto of the Ninety-Three“, a manifesto which endorsed the war and justified Germany’s participation. However, by 1915, Planck revoked parts of the Manifesto, and by 1916, he became an outspoken opponent of Germany’s annexation of other territories.

After the war, Planck was considered to be the German authority on physics, being the dean of Berlin Universit, a member of the Prussian Academy of Sciences and the German Physical Society, and president of the Kaiser Wilhelm Society (KWS, now the Max Planck Society). During the turbulent years of the 1920s, Planck used his position to raise funds for scientific research, which was often in short supply.

The Nazi seizure of power in 1933 resulted in tremendous hardship, some of which Planck personally bore witness to. This included many of his Jewish friends and colleagues being expelled from their positions and humiliated, and a large exodus of Germans scientists and academics.

Entrance of the administrative headquarters of the Max Planck Society in Munich. Credit: Wikipedia Commons/Maximilian Dörrbecker

Planck attempted to persevere in these years and remain out of politics, but was forced to step in to defend colleagues when threatened. In 1936, he resigned his positions as head of the KWS due to his continued support of Jewish colleagues in the Society. In 1938, he resigned as president of the Prussian Academy of Sciences due to the Nazi Party assuming control of it.

Despite these evens and the hardships brought by the war and the Allied bombing campaign, Planck and his family remained in Germany. In 1945, Planck’s son Erwin was arrested due to the attempted assassination of Hitler in the July 20th plot, for which he was executed by the Gestapo. This event caused Planck to descend into a depression from which he did not recover before his death.

Death and Legacy:

Planck died on October 4th, 1947 in Gottingen, Germany at the age of 89. He was survived by his second wife, Marga von Hoesslin, and his youngest son Hermann. Though he had been forced to resign his key positions in his later years, and spent the last few years of his life haunted by the death of his eldest son, Planck left a remarkable legacy in his wake.

In recognition for his fundamental contribution to a new branch of physics he was awarded the Nobel Prize in Physics in 1918. He was also elected to the Foreign Membership of the Royal Society in 1926, being awarded the Society’s Copley Medal in 1928. In 1909, he was invited to become the Ernest Kempton Adams Lecturer in Theoretical Physics at Columbia University in New York City.

The Max Planck Medal, issued by the German Physical Society in recognition of scientific contributions. Credit: dpg-physik.de

He was also greatly respected by his colleagues and contemporaries and distinguished himself by being an integral part of the three scientific organizations that dominated the German sciences- the Prussian Academy of Sciences, the Kaiser Wilhelm Society, and the German Physical Society. The German Physical Society also created the Max Planck Medal, the first of which was awarded into 1929 to both Planck and Einstein.

The Max Planck Society was also created in the city of Gottingen in 1948 to honor his life and his achievements. This society grew in the ensuing decades, eventually absorbing the Kaiser Wilhelm Society and all its institutions. Today, the Society is recognized as being a leader in science and technology research and the foremost research organization in Europe, with 33 Nobel Prizes awarded to its scientists.

In 2009, the European Space Agency (ESA) deployed the Planck spacecraft, a space observatory which mapped the Cosmic Microwave Background (CMB) at microwave and infra-red frequencies. Between 2009 and 2013, it provided the most accurate measurements to date on the average density of ordinary matter and dark matter in the Universe, and helped resolve several questions about the early Universe and cosmic evolution.

Planck shall forever be remembered as one of the most influential scientists of the 20th century. Alongside men like Einstein, Schrodinger, Bohr, and Heisenberg (most of whom were his friends and colleagues), he helped to redefine our notions of physics and the nature of the Universe.

We have written many articles about Max Planck for Universe Today. Here’s What is Planck Time?, Planck’s First Light?, All-Sky Stunner from Planck, What is Schrodinger’s Cat?, What is the Double Slit Experiment?, and here’s a list of stories about the spacecraft that bears his name.

If you’d like more info on Max Planck, check out Max Planck’s biography from Science World and Space and Motion.

We’ve also recorded an entire episode of Astronomy Cast all about Max Planck. Listen here, Episode 218: Max Planck.

Sources:

How Does Light Travel?

Ever since Democritus – a Greek philosopher who lived between the 5th and 4th century’s BCE – argued that all of existence was made up of tiny indivisible atoms, scientists have been speculating as to the true nature of light. Whereas scientists ventured back and forth between the notion that light was a particle or a wave until the modern, the 20th century led to breakthroughs that showed that it behaves as both.

These included the discovery of the electron, the development of quantum theory, and Einstein’s Theory of Relativity. However, there remains many fascinating and unanswered questions when it comes to light, many of which arise from its dual nature. For instance, how is it that light can be apparently without mass, but still behave as a particle? And how can it behave like a wave and pass through a vacuum, when all other waves require a medium to propagate?

Theory of Light to the 19th Century:

During the Scientific Revolution, scientists began moving away from Aristotelian scientific theories that had been seen as accepted canon for centuries. This included rejecting Aristotle’s theory of light, which viewed it as being a disturbance in the air (one of his four “elements” that composed matter), and embracing the more mechanistic view that light was composed of indivisible atoms.

In many ways, this theory had been previewed by atomists of Classical Antiquity – such as Democritus and Lucretius – both of whom viewed light as a unit of matter given off by the sun. By the 17th century, several scientists emerged who accepted this view, stating that light was made up of discrete particles (or “corpuscles”). This included Pierre Gassendi, a contemporary of René Descartes, Thomas Hobbes, Robert Boyle, and most famously, Sir Isaac Newton.

The first edition of Newton's Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light (1704). Credit: Public Domain.
The first edition of Newton’s Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light (1704). Credit: Public Domain.

Newton’s corpuscular theory was an elaboration of his view of reality as an interaction of material points through forces. This theory would remain the accepted scientific view for more than 100 years, the principles of which were explained in his 1704 treatise “Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light“. According to Newton, the principles of light could be summed as follows:

  • Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  • These corpuscles are perfectly elastic, rigid, and weightless.

This represented a challenge to “wave theory”, which had been advocated by 17th century Dutch astronomer Christiaan Huygens. . These theories were first communicated in 1678 to the Paris Academy of Sciences and were published in 1690 in his Traité de la lumière (“Treatise on Light“). In it, he argued a revised version of Descartes views, in which the speed of light is infinite and propagated by means of spherical waves emitted along the wave front.

Double-Slit Experiment:

By the early 19th century, scientists began to break with corpuscular theory. This was due in part to the fact that corpuscular theory failed to adequately explain the diffraction, interference and polarization of light, but was also because of various experiments that seemed to confirm the still-competing view that light behaved as a wave.

The most famous of these was arguably the Double-Slit Experiment, which was originally conducted by English polymath Thomas Young in 1801 (though Sir Isaac Newton is believed to have conducted something similar in his own time). In Young’s version of the experiment, he used a slip of paper with slits cut into it, and then pointed a light source at them to measure how light passed through it.

According to classical (i.e. Newtonian) particle theory, the results of the experiment should have corresponded to the slits, the impacts on the screen appearing in two vertical lines. Instead, the results showed that the coherent beams of light were interfering, creating a pattern of bright and dark bands on the screen. This contradicted classical particle theory, in which particles do not interfere with each other, but merely collide.

The only possible explanation for this pattern of interference was that the light beams were in fact behaving as waves. Thus, this experiment dispelled the notion that light consisted of corpuscles and played a vital part in the acceptance of the wave theory of light. However subsequent research, involving the discovery of the electron and electromagnetic radiation, would lead to scientists considering yet again that light behaved as a particle too, thus giving rise to wave-particle duality theory.

Electromagnetism and Special Relativity:

Prior to the 19th and 20th centuries, the speed of light had already been determined. The first recorded measurements were performed by Danish astronomer Ole Rømer, who demonstrated in 1676 using light measurements from Jupiter’s moon Io to show that light travels at a finite speed (rather than instantaneously).

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)
Prof. Albert Einstein delivering the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science on Dec. 28th, 1934. Credit: AP Photo

By the late 19th century, James Clerk Maxwell proposed that light was an electromagnetic wave, and devised several equations (known as Maxwell’s equations) to describe how electric and magnetic fields are generated and altered by each other and by charges and currents. By conducting measurements of different types of radiation (magnetic fields, ultraviolet and infrared radiation), he was able to calculate the speed of light in a vacuum (represented as c).

In 1905, Albert Einstein published “On the Electrodynamics of Moving Bodies”, in which he advanced one of his most famous theories and overturned centuries of accepted notions and orthodoxies. In his paper, he postulated that the speed of light was the same in all inertial reference frames, regardless of the motion of the light source or the position of the observer.

Exploring the consequences of this theory is what led him to propose his theory of Special Relativity, which reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations, and accorded with the directly observed speed of light and accounted for the observed aberrations. It also demonstrated that the speed of light had relevance outside the context of light and electromagnetism.

For one, it introduced the idea that major changes occur when things move close the speed of light, including the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer. After centuries of increasingly precise measurements, the speed of light was determined to be 299,792,458 m/s in 1975.

Einstein and the Photon:

In 1905, Einstein also helped to resolve a great deal of confusion surrounding the behavior of electromagnetic radiation when he proposed that electrons are emitted from atoms when they absorb energy from light. Known as the photoelectric effect, Einstein based his idea on Planck’s earlier work with “black bodies” – materials that absorb electromagnetic energy instead of reflecting it (i.e. white bodies).

At the time, Einstein’s photoelectric effect was attempt to explain the “black body problem”, in which a black body emits electromagnetic radiation due to the object’s heat. This was a persistent problem in the world of physics, arising from the discovery of the electron, which had only happened eight years previous (thanks to British physicists led by J.J. Thompson and experiments using cathode ray tubes).

At the time, scientists still believed that electromagnetic energy behaved as a wave, and were therefore hoping to be able to explain it in terms of classical physics. Einstein’s explanation represented a break with this, asserting that electromagnetic radiation behaved in ways that were consistent with a particle – a quantized form of light which he named “photons”. For this discovery, Einstein was awarded the Nobel Prize in 1921.

Wave-Particle Duality:

Subsequent theories on the behavior of light would further refine this idea, which included French physicist Louis-Victor de Broglie calculating the wavelength at which light functioned. This was followed by Heisenberg’s “uncertainty principle” (which stated that measuring the position of a photon accurately would disturb measurements of it momentum and vice versa), and Schrödinger’s paradox that claimed that all particles have a “wave function”.

In accordance with quantum mechanical explanation, Schrodinger proposed that all the information about a particle (in this case, a photon) is encoded in its wave function, a complex-valued function roughly analogous to the amplitude of a wave at each point in space. At some location, the measurement of the wave function will randomly “collapse”, or rather “decohere”, to a sharply peaked function. This was illustrated in Schrödinger famous paradox involving a closed box, a cat, and a vial of poison (known as the “Schrödinger Cat” paradox).

In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect. The animation below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet
Artist’s impression of two photons travelling at different wavelengths, resulting in different- colored light. Credit: NASA/Sonoma State University/Aurore Simonnet

According to his theory, wave function also evolves according to a differential equation (aka. the Schrödinger equation). For particles with mass, this equation has solutions; but for particles with no mass, no solution existed. Further experiments involving the Double-Slit Experiment confirmed the dual nature of photons. where measuring devices were incorporated to observe the photons as they passed through the slits.

When this was done, the photons appeared in the form of particles and their impacts on the screen corresponded to the slits – tiny particle-sized spots distributed in straight vertical lines. By placing an observation device in place, the wave function of the photons collapsed and the light behaved as classical particles once more. As predicted by Schrödinger, this could only be resolved by claiming that light has a wave function, and that observing it causes the range of behavioral possibilities to collapse to the point where its behavior becomes predictable.

The development of Quantum Field Theory (QFT) was devised in the following decades to resolve much of the ambiguity around wave-particle duality. And in time, this theory was shown to apply to other particles and fundamental forces of interaction (such as weak and strong nuclear forces). Today, photons are part of the Standard Model of particle physics, where they are classified as boson – a class of subatomic particles that are force carriers and have no mass.

So how does light travel? Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to propagate through mediums (like air and water) as well as space. It has no mass, but can still be absorbed, reflected, or refracted if it comes in contact with a medium. And in the end, the only thing that can truly divert it, or arrest it, is gravity (i.e. a black hole).

What we have learned about light and electromagnetism has been intrinsic to the revolution which took place in physics in the early 20th century, a revolution that we have been grappling with ever since. Thanks to the efforts of scientists like Maxwell, Planck, Einstein, Heisenberg and Schrodinger, we have learned much, but still have much to learn.

For instance, its interaction with gravity (along with weak and strong nuclear forces) remains a mystery. Unlocking this, and thus discovering a Theory of Everything (ToE) is something astronomers and physicists look forward to. Someday, we just might have it all figured out!

We have written many articles about light here at Universe Today. For example, here’s How Fast is the Speed of Light?, How Far is a Light Year?, What is Einstein’s Theory of Relativity?

If you’d like more info on light, check out these articles from The Physics Hypertextbook and NASA’s Mission Science page.

We’ve also recorded an entire episode of Astronomy Cast all about Interstellar Travel. Listen here, Episode 145: Interstellar Travel.

What Is The Electron Cloud Model?

The early 20th century was a very auspicious time for the sciences. In addition to Ernest Rutherford and Niels Bohr giving birth to the Standard Model of particle physics, it was also a period of breakthroughs in the field of quantum mechanics. Thanks to ongoing studies on the behavior of electrons, scientists began to propose theories whereby these elementary particles behaved in ways that defied classical, Newtonian physics.

One such example is the Electron Cloud Model proposed by Erwin Schrodinger. Thanks to this model, electrons were no longer depicted as particles moving around a central nucleus in a fixed orbit. Instead, Schrodinger proposed a model whereby scientists could only make educated guesses as to the positions of electrons. Hence, their locations could only be described as being part of a ‘cloud’ around the nucleus where the electrons are likely to be found.

Atomic Physics To The 20th Century:

The earliest known examples of atomic theory come from ancient Greece and India, where philosophers such as Democritus postulated that all matter was composed of tiny, indivisible and indestructible units. The term “atom” was coined in ancient Greece and gave rise to the school of thought known as “atomism”. However, this theory was more of a philosophical concept than a scientific one.

Various atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy (1808). Credit: Public Domain
Various atoms and molecules as depicted in John Dalton’s A New System of Chemical Philosophy (1808). Credit: Public Domain

It was not until the 19th century that the theory of atoms became articulated as a scientific matter, with the first evidence-based experiments being conducted. For example, in the early 1800’s, English scientist John Dalton used the concept of the atom to explain why chemical elements reacted in certain observable and predictable ways. Through a series of experiments involving gases, Dalton went on to develop what is known as Dalton’s Atomic Theory.

This theory expanded on the laws of conversation of mass and definite proportions and came down to five premises: elements, in their purest state, consist of particles called atoms; atoms of a specific element are all the same, down to the very last atom; atoms of different elements can be told apart by their atomic weights; atoms of elements unite to form chemical compounds; atoms can neither be created or destroyed in chemical reaction, only the grouping ever changes.

Discovery Of The Electron:

By the late 19th century, scientists also began to theorize that the atom was made up of more than one fundamental unit. However, most scientists ventured that this unit would be the size of the smallest known atom – hydrogen. By the end of the 19th century, his would change drastically, thanks to research conducted by scientists like Sir Joseph John Thomson.

Through a series of experiments using cathode ray tubes (known as the Crookes’ Tube), Thomson observed that cathode rays could be deflected by electric and magnetic fields. He concluded that rather than being composed of light, they were made up of negatively charged particles that were 1ooo times smaller and 1800 times lighter than hydrogen.

The Plum Pudding model of the atom proposed by John Dalton. Credit: britannica.com
The Plum Pudding model of the atom proposed by John Dalton. Credit: britannica.com

This effectively disproved the notion that the hydrogen atom was the smallest unit of matter, and Thompson went further to suggest that atoms were divisible. To explain the overall charge of the atom, which consisted of both positive and negative charges, Thompson proposed a model whereby the negatively charged “corpuscles” were distributed in a uniform sea of positive charge – known as the Plum Pudding Model.

These corpuscles would later be named “electrons”, based on the theoretical particle predicted by Anglo-Irish physicist George Johnstone Stoney in 1874. And from this, the Plum Pudding Model was born, so named because it closely resembled the English desert that consists of plum cake and raisins. The concept was introduced to the world in the March 1904 edition of the UK’s Philosophical Magazine, to wide acclaim.

Development Of The Standard Model:

Subsequent experiments revealed a number of scientific problems with the Plum Pudding model. For starters, there was the problem of demonstrating that the atom possessed a uniform positive background charge, which came to be known as the “Thomson Problem”. Five years later, the model would be disproved by Hans Geiger and Ernest Marsden, who conducted a series of experiments using alpha particles and gold foil – aka. the “gold foil experiment.”

In this experiment, Geiger and Marsden measured the scattering pattern of the alpha particles with a fluorescent screen. If Thomson’s model were correct, the alpha particles would pass through the atomic structure of the foil unimpeded. However, they noted instead that while most shot straight through, some of them were scattered in various directions, with some going back in the direction of the source.

A depiction of the atomic structure of the helium atom. Credit: Creative Commons
A depiction of the atomic structure of the helium atom. Credit: Creative Commons

Geiger and Marsden concluded that the particles had encountered an electrostatic force far greater than that allowed for by Thomson’s model. Since alpha particles are just helium nuclei (which are positively charged) this implied that the positive charge in the atom was not widely dispersed, but concentrated in a tiny volume. In addition, the fact that those particles that were not deflected passed through unimpeded meant that these positive spaces were separated by vast gulfs of empty space.

By 1911, physicist Ernest Rutherford interpreted the Geiger-Marsden experiments and rejected Thomson’s model of the atom. Instead, he proposed a model where the atom consisted of mostly empty space, with all its positive charge concentrated in its center in a very tiny volume, that was surrounded by a cloud of electrons. This came to be known as the Rutherford Model of the atom.

Subsequent experiments by Antonius Van den Broek and Niels Bohr refined the model further. While Van den Broek suggested that the atomic number of an element is very similar to its nuclear charge, the latter proposed a Solar-System-like model of the atom, where a nucleus contains the atomic number of positive charge and is surrounded by an equal number of electrons in orbital shells (aka. the Bohr Model).

The Electron Cloud Model:

During the 1920s, Austrian physicist Erwin Schrodinger became fascinated by the theories Max Planck, Albert Einstein, Niels Bohr, Arnold Sommerfeld, and other physicists. During this time, he also became involved in the fields of atomic theory and spectra, researching at the University of Zurich and then the Friedrich Wilhelm University in Berlin (where he succeeded Planck in 1927).

Artist's concept of the Electron Cloud model, which described the likely location of electron orbitals. Credit: prezi.com
Artist’s concept of the Electron Cloud model, which described the likely location of electron orbitals over time. Credit: Pearson Prentice Hall

In 1926, Schrödinger tackled the issue of wave functions and electrons in a series of papers. In addition to describing what would come to be known as the Schrodinger equation – a partial differential equation that describes how the quantum state of a quantum system changes with time – he also used mathematical equations to describe the likelihood of finding an electron in a certain position.

This became the basis of what would come to be known as the Electron Cloud (or quantum mechanical) Model, as well as the Schrodinger equation. Based on quantum theory, which states that all matter has properties associated with a wave function, the Electron Cloud Model differs from the Bohr Model in that it does not define the exact path of an electron.

Instead, it predicts the likely position of the location of the electron based on a function of probabilities. The probability function basically describes a cloud-like region where the electron is likely to be found, hence the name. Where the cloud is most  dense, the probability of finding the electron is greatest; and where the  electron is less likely to be, the cloud is less dense.

These dense regions are known as “electron orbitals”, since they are the most likely location where an orbiting electron will be found. Extending this “cloud” model to a 3-dimensional space, we see a barbell or flower-shaped atom (as in image at the top). Here, the branching out regions are the ones where we are most likely to find the electrons.

Thanks to Schrodinger’s work, scientists began to understand that in the realm of quantum mechanics, it was impossible to know the exact position and momentum of an electron at the same time. Regardless of what the observer knows initially about a particle, they can only predict its succeeding location or momentum in terms of probabilities.

At no given time will they be able to ascertain either one. In fact, the more they know about the momentum of a particle, the less they will know about its location, and vice versa. This is what is known today as the “Uncertainty Principle”.

Note that the orbitals mentioned in the previous paragraph are formed by a hydrogen atom (i.e. with just one electron). When dealing with atoms that have more electrons, the electron orbital regions spread out evenly into a spherical fuzzy ball. This is where the term ‘electron cloud’ is most appropriate.

This contribution was universally recognized as being one of the cost important contributions of the 20th century, and one which triggered a revolution in the fields of physics, quantum mechanics and indeed all the sciences. Thenceforth, scientists were no longer working in a universe characterized by absolutes of time and space, but in quantum uncertainties and time-space relativity!

We have written many interesting articles about atoms and atomic models here at Universe Today. Here’s What Is John Dalton’s Atomic Model?, What Is The Plum Pudding Model?, What Is Bohr’s Atomic Model?, Who Was Democritus?, and What Are The Parts Of An Atom?

For more information, be sure to check What Is Quantum Mechanics? from Live Science.

Astronomy Cast also has episode on the topic, like Episode 130: Radio Astronomy, Episode 138: Quantum Mechanics, and Episode 252: Heisenberg Uncertainty Principle

Who was Albert Einstein?

Albert Einstein's Inventions

An end of the millennium poll, conducted by Physics World magazine, asked 100 of the world’s leading physicists were asked who they considered to be the top 10 greatest scientist of all time. The number one scientist was Albert Einstein (with Sir Isaac Newton earning second place). But in addition to being perhaps the most famous scientist who ever lived, the name of Albert Einstein is also a household name, synonymous with genius and endless creativity.

As the discoverer of Special and General Relativity, Einstein revolutionized our understanding of time, space, and universe. This discovery, along with the development of quantum mechanics, effectively brought to an end the era of Newtonian Physics and gave rise to the modern age. Whereas the previous two centuries had been characterized by universal gravitation and fixed frames of reference, Einstein helped usher in an age of uncertainty, black holes and “scary actions at a distance”.

Continue reading “Who was Albert Einstein?”

How We’ve ‘Morphed’ From “Starry Night” to Planck’s View of the BICEP2 Field

From the vantage point of a window in an insane asylum, Vincent van Gogh painted one of the most noted and valued artistic works in human history. It was the summer of 1889. With his post-impressionist paint strokes, Starry Night depicts a night sky before sunrise that undulates, flows and is never settled. Scientific discoveries are revealing a Cosmos with such characteristics.

Since Vincent’s time, artists and scientists have taken their respective paths to convey and understand the natural world. The latest released images taken by the European Planck Space Telescope reveals new exquisite details of our Universe that begin to touch upon the paint strokes of the great master and at the same time looks back nearly to the beginning of time. Since Van Gogh – the passage of 125 years – scientists have constructed a progressively intricate and incredible description of the Universe.

New images returned by the Planck telescope (right) begin to rival the complexity and beauty of a great artists imagination - Starry Night.A visulization of the Planck data represents the interaction of interstellar dust with the galactic magnetic field. Color defines the intensity of dust emisions and the measurements of polarized light reveals the direction of the magnetic field lines. (Credits: Vincent Van Gogh, ESA)
New images returned by the Planck telescope (right) begin to rival the complexity and beauty of a great artists imagination – Starry Night.A visulization of the Planck data represents the interaction of interstellar dust with the galactic magnetic field. Color defines the intensity of dust emisions and the measurements of polarized light reveals the direction of the magnetic field lines. (Credits: Vincent Van Gogh, ESA)

The path from Van Gogh to the Planck Telescope imagery is indirect, an abstraction akin to the impressionism of van Gogh’s era. Impressionists in the 1800s showed us that the human mind could interpret and imagine the world beyond the limitations of our five senses. Furthermore, optics since the time of Galileo had begun to extend the capability of our senses.

A photograph of James Clerk Maxwell and a self-portrait of Vincent van Gogh. Maxwell's equations and impressionism in the fine arts in the 19th Century sparked an enhanced perception, expression and abstraction of the World and began a trek of knowledge and technology into the modern era. (Credit: National Gallery of Art, Public Domain)
A photograph of James Clerk Maxwell and a self-portrait of Vincent van Gogh. Maxwell’s equations and impressionism in the fine arts in the 19th Century sparked an enhanced perception, expression and abstraction of the World and began a trek of knowledge and technology into the modern era. (Credit: National Gallery of Art, Public Domain)

Mathematics is perhaps the greatest form of abstraction of our vision of the World, the Cosmos. The path of science from the era of van Gogh began with his contemporary, James Clerk Maxwell who owes inspiration from the experimentalist Michael Faraday. The Maxwell equations mathematically define the nature of electricity and magnetism. Since Maxwell, electricity, magnetism and light have been intertwined. His equations are now a derivative of a more universal equation – the Standard Model of the Universe. The accompanying Universe Today article by Ramin Skibba describes in more detail the new findings by Planck Mission scientists and its impact on the Standard Model.

The work of Maxwell and experimentalists such as Faraday, Michelson and Morley built an overwhelming body of knowledge upon which Albert Einstein was able to write his papers of 1905, his miracle year (Annus mirabilis). His theories of the Universe have been interpreted, verified time and again and lead directly to the Universe studied by scientists employing the Planck Telescope.

The first Solvay Conference in 1911 was organized by Max Planck and Hendrik Lorentz. Planck is standing, second from left. The first Solvay, by invitation only, included most of the greatest scientists of the early 20th Century. While Planck is known for his work on quanta, the groundwork for quantum theory - the Universe in minutiae , the Planck telescope is surveying the Universe in the large. Physicists are closer to unifying the nature of the two extremes. Insets - Planck (1933, 1901).
The first Solvay Conference in 1911 was organized by Max Planck and Hendrik Lorentz. Planck is standing, second from left. The first Solvay, by invitation only, included most of the greatest scientists of the early 20th Century. While Planck is known for his work on quanta, the groundwork for quantum theory – the Universe in minutiae , the Planck telescope is surveying the Universe in the large. Physicists are closer to unifying the nature of the two extremes. Insets – Planck (1933, 1901).

In 1908, the German physicist Max Planck, for whom the ESA telescope is named, recognized the importance of Einstein’s work and finally invited him to Berlin and away from the obscurity of a patent office in Bern, Switzerland.

As Einstein spent a decade to complete his greatest work, the General Theory of Relativity, astronomers began to apply more powerful tools to their trade. Edwin Hubble, born in the year van Gogh painted Starry Night, began to observe the night sky with the most powerful telescope in the World, the Mt Wilson 100 inch Hooker Telescope. In the 1920s, Hubble discovered that the Milky Way was not the whole Universe but rather an island universe, one amongst billions of galaxies. His observations revealed that the Milky Way was a spiral galaxy of a form similar to neighboring galaxies, for example, M31, the Andromeda Galaxy.

Pablo Picasso and Albert Einstein were human wrecking balls in their respective professions. What began with Faraday and Maxwell, van Gogh and Gaugin were taken to new heights. We are encapsulated in the technology derived from these masters but are able to break free of the confinement technology can impose through the expression and art of Picasso and his contemporaries.
Pablo Picasso and Albert Einstein were human wrecking balls in their respective professions. What began with Faraday and Maxwell, van Gogh and Gaugin were taken to new heights. We are encapsulated in the technology derived from these masters but are able to break free of the confinement technology can impose through the expression and art of Picasso and his contemporaries.

Einstein’s equations and Picasso’s abstraction created another rush of discovery and expressionism that propel us for another 50 years. Their influence continues to impact our lives today.

The Andromeda Galaxy, M31, the nearest spiral galaxy to the Milky Way, several times the angular size of the Moon. First photographed by Isaac Roberts, 1899 (inset), spirals are a function of gravity and the propagation of shock waves, across the expanses of such galaxies are electromagnetic fields such as reported by Planck mission scientists.
The Andromeda Galaxy, M31, the nearest spiral galaxy to the Milky Way, several times the angular size of the Moon. First photographed by Isaac Roberts, 1899 (inset), spirals are a function of gravity and the propagation of shock waves, across the expanses of such galaxies are electromagnetic fields such as reported by Planck mission scientists.

Telescopes of Hubble’s era reached their peak with the Palomar 200 inch telescope, four times the light gathering power of Mount Wilson’s. Astronomy had to await the development of modern electronics. Improvements in photographic techniques would pale in comparison to what was to come.

The development of electronics was accelerated by the pressures placed upon opposing forces during World War II. Karl Jansky developed radio astronomy in the 1930s which benefited from research that followed during the war years. Jansky detected the radio signature of the Milky Way. As Maxwell and others imagined, astronomy began to expand beyond just visible light – into the infrared and radio waves. Discovery of the Cosmic Microwave Background (CMB) in 1964 by Arno Penzias and Robert Wilson is arguably the greatest discovery  from observations in the radio wave (and microwave) region of the electromagnetic spectrum.

From 1937 to the present day, radio astronomy has been an ever refining merger of electronics and optics. Karl Jansky's first radio telescope, 1937 (inset) and the great ALMA array now in operation studying the Universe in the microwave region of the electromagnetic spectrum. (Credits: ESO)
From 1937 to the present day, radio astronomy has been an ever refining merger of electronics and optics. Karl Jansky’s first radio telescope, 1937 (inset) and the great ALMA array now in operation studying the Universe in the microwave region of the electromagnetic spectrum. (Credits: ESO)

Analog electronics could augment photographic studies. Vacuum tubes led to photo-multiplier tubes that could count photons and measure more accurately the dynamics of stars and the spectral imagery of planets, nebulas and whole galaxies. Then in the 1947, three physicists at Bell Labs , John Bardeen, Walter Brattain, and William Shockley created the transistor that continues to transform the World today.

For astronomy and our image of the Universe, it meant more acute imagery of the Universe and imagery spanning across the whole electromagnetic spectrum. Infrared Astronomy developed slowly beginning in the 1800s but it was solid state electronics in the 1960s when it came of age. Microwave or Millimeter Radio Astronomy required a marriage of radio astronomy and solid state electronics. The first practical millimeter wave telescope began operations in 1980 at Kitt Peak Observatory.

A early work of Picasso (center), the work at Bell Labs of John Bardeen, Walter Brattain, and William Shockley and the mobile art of Alexander Calder. As artists attempt to balance color and shape, the Bell Lab engineers balanced electrons essentially on the head of a pin, across junctions to achieve success and create the first transistor.
An early work of Picasso (center), the work at Bell Labs of John Bardeen, Walter Brattain, and William Shockley and the mobile art of Alexander Calder. As artists attempt to balance color and shape, the Bell Lab engineers balanced electrons essentially on the head of a pin, across junctions to create the first transistor.

With further improvements in solid state electronics and development of extremely accurate timing devices and development of low-temperature solid state electronics, astronomy has reached the present day. With modern rocketry, sensitive devices such as the Hubble and Planck Space Telescopes have been lofted into orbit and above the opaque atmosphere surrounding the Earth.

In 1964, the Cosmic Microwave Background (CMD) was discovered. In the early 1990s, the COBE space telescope even more detailed results. Planck has refined and expanded  upon IRAS, COBE and BICEP observations. (Photo Credits: ESA)
In 1964, the Cosmic Microwave Background (CMB) was discovered. In the early 1990s, the COBE space telescope returned even more detailed results and now Planck has refined and expanded upon IRAS, COBE and BICEP observations of the CMB. Inset, first light observations of the Planck mission. (Photo Credits: ESA)

Astronomers and physicists now probe the Universe across the whole electromagnetic spectrum generating terabytes of data and abstractions of the raw data allow us to look out into the Universe with effectively a sixth sense, that which is given to us by 21st century technology. What a remarkable coincidence that the observations of our best telescopes peering through hundreds of thousands of light years, even more so, back 13.8 billion years to the beginning of time, reveal images of the Universe that are not unlike the brilliant and beautiful paintings of a human with a mind that gave him no choice but to see the world differently.

Now 125 years later, this sixth sense forces us to see the World in a similar light. Peer up into the sky and you can imagine the planetary systems revolving around nearly every star, swirling clouds of spiral galaxies, one even larger in the sky than our Moon, and waves of magnetic fields everywhere across the starry night.

Consider what the Planck Mission is revealing, questions it is answering and new ones it is raising – It Turns Out Primordial Gravitational Waves Weren’t Found.

Ancient Impacts Stained Vesta with Carbon-Rich Material

Composite-color 3D image of Cornelia crater on Vesta (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Ever since arriving at Vesta in July 2011, NASA’s Dawn spacecraft has been capturing high-resolution images of the protoplanet’s surface, revealing a surprisingly varied and complex terrain covered in ridges, hills, grooves and, of course, craters of many different sizes and ages. Many of Vesta’s largest craters exhibit strange dark stains and splotches within and around them, some literally darker than coal. These stains were a puzzle to scientists when they were first seen, but the latest research now confirms that they may actually be the remains of the ancient impacts that caused them: dark deposits left by the myriad of carbon-rich objects that struck Vesta over the past four-and-a-half billion years.

Even though Vesta had a completely molten surface 4.5 billion years ago it’s believed that its crust likely solidified within a few million years, making the 530-km (329-mile) -wide world a literal time capsule for events taking place in the inner Solar System since then… one reason why Vesta was chosen as a target for the Dawn mission.

714973main_pia16632-43_946-710Using data acquired by Dawn during its year in orbit around Vesta, a team led by researchers from Germany’s Max Planck Institute for Solar System Research and the University of North Dakota investigated the dark material seen lining the edges of large impact basins located on the protoplanet’s southern hemisphere. What they determined was that much of the material was delivered during an initial large, low-velocity impact event 2–3 billion years ago that created the largest basin — Veneneia — and was then partially covered by a later impact that created the smaller basin that’s nearly centered on Vesta’s southern pole — Rheasilva.

“The evidence suggests that the dark material on Vesta is rich in carbonaceous material and was brought there by collisions with smaller asteroids.”

– Vishnu Reddy, lead author, Max Planck Institute for Solar System Research and the University of North Dakota

714963main_pia16630-43_946-710

Dawn framing camera images of dark material on Vesta. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Subsequent smaller asteroid impacts over the millennia likely brought more carbonaceous material to Vesta’s surface, both delivering it as well as revealing any that may have existed beneath brighter surfaces.

Read more: Asteroid’s Unusual Light and Dark Crater

 

The dark, carbon-rich material observed on Vesta by Dawn also seems to match up with similarly dark clasts found in meteorites that have landed on Earth which are thought to have originated from Vesta.

“Our analysis of the dark material on Vesta and comparisons with laboratory studies of HED meteorites for the first time proves directly that these meteorites are fragments from Vesta,” said Lucille Le Corre from the Max Planck Institute for Solar System Research, another lead author of the study.

If evidence of such collisions between worlds can be found on Vesta, it’s likely that similar events were occurring all across the inner solar system during its early days, providing a clue as to how carbon-rich organic material was delivered to Earth — and possibly Mars as well. Such material — the dark stains we see today lining Vesta’s craters — would have helped form the very building blocks of life on our planet.

The team’s findings were published in the November/December issue of the journal Icarus.

Read more on the Max Planck Institute’s news page here, and on the NASA release here. Learn more about the Dawn mission in the video below, narrated by Leonard Nimoy.

How Plasma Technology From Space Will Save Our Lives

[/caption]

It might sound obvious to anyone who’s ever played a video game in the past thirty years, but plasma has been found to be very effective at destroying some truly dangerous beasts. Except in this case, the battlefields aren’t space bases, they’re hospitals… and the creatures aren’t CGI alien monsters, they’re very real — and very dangerous — bacteria right here on Earth.

Scarier than any alien: 20,000x magnification of drug-resistant staphylococcus aureus bacteria (CDC)

Long-running experiments performed aboard the International Space Station have been instrumental in the development of plasma-based tools that can be used to kill bacteria in hospitals — especially potentially deadly strains of Methicillin-resistant staphylococcus aureus, also known as MRSA.

MRSA infections can occur in people who have undergone surgery or other invasive hospital procedures, or have weakened immune systems and are exposed to the bacteria in a hospital or other health care environment. A form of staph that’s become resistant to many antibiotics, MRSA is notoriously difficult to treat, easily transmitted — both in and out of hospitals — and deadly.

Various strains of MRSA infections have been found to be linked to mortality rates ranging from 10% to 50%.

Dr. Gregor Morfill, director of the Max Planck Institute for Extraterrestrial Physics, has been researching the antimicrobial abilities of plasma in experiments running aboard the ISS since 2001. What he and his team have found is that cold plasma can effectively sanitize skin and surfaces, getting into cracks and crevices that soap and even UV light cannot. Even though bacteria like staphylococcus are constantly evolving resistances to medications, they wither under a barrage of plasma.

Eventually, Dr. Morfill’s research, funded by ESA, helped with the creation of a working prototype that could be used in hospitals — literally a plasma weapon for fighting microbes.

It's no BFG, but it can kill flesh-eating monsters in mass quantities (Photo: Max-Planck Institute for Extraterrestrial Physics)

This is yet another example of “trickle-down” technology developed in space. Over two dozen astronauts and cosmonauts have worked on the research aboard the ISS over the past decade, and one day you may have cold plasma disinfecting devices in your home, cleaning your toothbrushes and countertops.

In addition the technology could be used to clean exploration spacecraft, preventing contamination of other worlds with Earthly organisms.

“It has many practical applications, from hand hygiene to food hygiene, disinfection of medical instruments, personal hygiene, even dentistry,” said Dr. Morfill. “This could be used in many, many fields.”

Bacteria, prepare to get fragged.

News source: ScienceDaily. Top Doom3 image from http://www.moddb.com/.

Yum! Dirty fingers! (MPE)

How Did Comet Lovejoy Survive Its Trip Around The Sun?

[/caption]

It was just about three months ago that the astronomy world watched in awe as the recently-discovered comet Lovejoy plummeted toward the Sun on what was expected to be its final voyage, only to reappear on the other side seemingly unscathed! Surviving its solar visit, Lovejoy headed back out into the solar system, displaying a brand-new tail for skywatchers in southern parts of the world (and for a few select viewers above the world as well.)

How did a loosely-packed ball of ice and rock manage to withstand such a close pass through the Sun’s blazing corona, when all expectations were that it would disintegrate and fizzle away? A few researchers from Germany have an idea.

Scientists from the Max Planck Institute for Extraterrestrial Physics and the Braunschweig University of Technology have hypothesized that Comet Lovejoy managed to hold itself together through the very process that, to most people, defines a comet: the outgassing of sublimated icy material.

As a comet near the Sun, the increased heating from solar radiation causes the frozen materials within the nucleus to sublimate — go directly and suddenly from solid to gas, skipping the liquid middle stage — and, in doing so, burst through the surface of the comet and create the long, hazy reflective tail that is so often associated with them.

Overview of the forces acting on sungrazing comets. (Illustration from paper.)

In the case of Lovejoy, which was on a direct path toward the Sun, the sublimation itself may have provided enough outward force across its surface to literally keep it together, according to the team’s research.

“The reaction force caused by the strong outgassing (sublimation) of the nucleus near the Sun acts to keep the nucleus together and to overcome the tidal disruption,” the paper claims.

In addition, the team states that the size of the comet’s nucleus can be derived using an equation that takes into consideration the combined forces of outgassing, the material composition of the comet’s nucleus, the comet’s own gravity and the tidal forces exerted by the comet’s close proximity to the Sun (i.e., the Roche limit).

Using that equation, the team concluded that the diameter of Comet Lovejoy’s nucleus is anywhere between 0.2 km and 11 km (.125 miles and 6.8 miles). Any smaller and it would have lost too much material during its pass (and had too little gravity); any larger and it would have been too thick for outgassing to provide enough counterbalancing force.

If this hypothesis is correct, taking a trip around the Sun may not mean the end for all comets… at least not those of a certain size!

Watch the video of Lovejoy’s Dec. 15 solar swing below:

The paper was submitted to the journal Icarus on March 8, 2012 by Bastian Gundlach. See the full text here.

X-rays Reveal a Stellar-Mass Black Hole in Andromeda

[/caption]

An ultraluminous x-ray source (ULX) previously spotted in the neighboring Andromeda galaxy by NASA’s Chandra observatory has now been revealed to be a stellar-mass black hole, according to researchers at the Max Planck Institute for Extraterrestrial Physics.

The black hole was the first ULX seen in Andromeda, as well as the closest ever observed.

Ultraluminous x-ray sources are rare objects, observed in the near and distant Universe in the outer regions of galaxies. Typically only one or two ULXs are seen in any one particular galaxy — if there are any seen at all.

The large distances to ULXs makes detailed observations difficult, and so their exact causes have been hard to nail down.

This particular x-ray source was first identified in late 2009 by Chandra and was followed up with observations by Swift and Hubble. Classified by researchers at the Max Planck Institute as a low-luminosity source, it actually outshined the entire Andromeda galaxy in x-ray luminosity!

Continued observations with Chandra and ESA’s XMM-Newton showed behavior similar to known x-ray sources in our own Milky Way galaxy: actively feeding black holes.

“We were very lucky that we caught the ULX early enough to see most of its lightcurve, which showed a very similar behavior to other X-ray sources from our own galaxy,” said Wolfgang Pietsch from the Max Planck Institute for Extraterrestrial Physics. The emission decayed exponentially with a characteristic timescale of about one month, which is a common property of stellar mass X-ray binaries. “This means that the ULX in Andromeda likely contains a normal, stellar black hole swallowing material at very high rates.”

It’s estimated that the black hole is at least 13 times the mass of the Sun.

(Related: Stellar-Mass Black Hole Blows Record-Speed Winds)

Continued observations of the ULX/black hole will attempt to observe another outburst similar to the 2009 event, although if this black hole is anything like those observed in our galaxy it could be years before another such event occurs. Still, our relatively clear view of the Andromeda galaxy unobscured by intervening dust  and gas offers a chance to perhaps spot other potential x-ray sources residing there.

Read the report from the AlphaGalileo Foundation here, or on ScienceDaily here.

The first MPE team’s paper can be found here.

First Look at a Black Hole’s Feast


A true heart of darkness lies at the center of our galaxy: Sagittarius A* (pronounced “A-star”) is a supermassive black hole with the mass of four million suns packed into an area only as wide as the distance between Earth and the Sun. Itself invisible to direct observation, Sgr A* makes its presence known through its effect on nearby stars, sending them hurtling through space in complex orbits at speeds upwards of 600 miles a second. And it emits a dull but steady glow in x-ray radiation, the last cries of its most recent meals. Gas, dust, stars… solar systems… anything in Sgr A*’s vicinity will be drawn inexorably towards it, getting stretched, shredded and ultimately absorbed (for lack of a better term) by the dark behemoth, just adding to its mass and further strengthening its gravitational pull.

Now, for the first time, a team of researchers led by Reinhard Genzel from the Max-Planck Institute for Extraterrestrial Physics in Germany will have a chance to watch a supermassive black hole’s repast take place.

Continue reading “First Look at a Black Hole’s Feast”