Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

Thanks to the vastly improved capabilities of today’s telescopes, astronomers have been probing deeper into the cosmos and further back in time. In so doing, they have been able to address some long-standing mysteries about how the Universe evolved since the Big Bang. One of these mysteries is how supermassive black holes (SMBHs), which play a crucial role in the evolution of galaxies, formed during the early Universe.

Using the ESO’s Very Large Telescope (VLT) in Chile, an international team of astronomers observed galaxies as they appeared about 1.5 billion years after the Big Bang (ca. 12.5 billion years ago). Surprisingly, they observed large reservoirs of cool hydrogen gas that could have provided a sufficient “food source” for SMBHs. These results could explain how SMBHs grew so fast during the period known as the Cosmic Dawn.

Continue reading “Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang”

Watch a Simulation of a Galaxy, From the Big Bang Until the Present Day

Credit: RAS

Since the mid-20th century, scientists have had a pretty good idea of how the Universe came to be. Cosmic expansion and the discovery of the Cosmic Microwave Background (CMB) lent credibility to the Big Bang Theory, and the accelerating rate of expansion led to theories about Dark Energy. Still, there is much about the early Universe that scientists still don’t know, which requires that they rely on simulations on cosmic evolution.

This has traditionally posed a bit of a problem since the limitations of computing meant that simulation could either be large scale or detailed, but not both. However, a team of scientists from Germany and the United States recently completed the most detailed large-scale simulation to date. Known as TNG50, this state-of-the-art simulation will allow researchers to study how the cosmos evolved in both detail and a large scale.

Continue reading “Watch a Simulation of a Galaxy, From the Big Bang Until the Present Day”

Starbursts May Actually Destroy Globular Clusters

The Galactic globular cluster M80 in the constellation Scorpius contains several hundred thousand stars. Credit: HST/NASA/ESA


It seems logical to assume that long ago, the amount of globular clusters increased in our galaxy during star-making frenzies called ‘starbursts.’ But a new computer simulation shows just the opposite: 13 billion years ago, starbursts may have actually destroyed many of the globular clusters that they helped to create.

“It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them,” said Dr. Diederik Kruijssen of the Max Planck Institute for Astrophysics. “This occurs not only in galaxy collisions, but should be expected in any starburst environment”

Astronomers have wondered why throughout the Universe, typical globular star clusters contain about the same number of stars. In contrast much younger stellar clusters can contain almost any number of stars, from fewer than 100 to many thousands.

The new computer simulation by Kruijssen and his team proposes that this difference could be explained by the conditions under which globular clusters formed early on in the evolution of their host galaxies.

In the early Universe, starbursts were common. Large galaxies were in clusters, and collisions occurred often. The computer simulation showed that during starbursts, gas, dust and stars were still being sloshed around from the galaxy collision, with the pull of gravity on the globular clusters constantly changing. This was enough to rip apart most of the globular clusters and only the biggest ones were strong enough to survive. The simulations showed most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. But after the environment calmed down, the surviving globular clusters have survived – now living quietly – and we can still enjoy their beauty.

In their paper, the astronomers say that this explains why the number of stars contained within globular clusters is roughly the same across the entire Universe. “It therefore makes perfect sense that all globular clusters have approximately the same large number of stars,” said Kruijssen. “Their smaller brothers and sisters that didn’t contain as many stars were doomed to be destroyed.”

Kruijssen and his team said that while the very brightest and largest clusters were capable of surviving the galaxy collision due to their own gravitational attraction, numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces.

The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. Kruijssen and his team says globular clusters can therefore be used to shed more light on how the first generations of stars and galaxies were born.

“In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation,” said Kruijssen. “It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters.”

This new finding may also tie in with other recent findings from Spitzer and ESO that starburst activity may have only lasted around 100 million years and may have also been cut short when black holes formed at the center of galaxies.

Source: Max-Planck Institute for Astrophysics. Paper: Kruijssen et al, “Formation versus destruction: the evolution of the star cluster population in galaxy mergers”

Cosmic Collisions – The Astronomical Alchemist

New theoretical models now confirm that it could be forged in the merger events of two neutron stars. Image: Natural gold nuggets from California and Australia; Natural History Museum, London

[/caption]Here on Earth the practice of alchemy once had its era – trying to turn lead into gold. However, somewhere out there in the universal scheme of things, that process is a reality and not a myth. Instead of a scientist desperately looking for a sublime formula, it just might happen when neutron stars merge in a violent collision.

We’re all aware of the nuclear fusion manner in which elements are created from stars. Hydrogen is burned into helium, and so up the line until it reaches iron. It’s just the way stellar physics work and we accept it. To date, science has theorized that heavier elements were the creation of supernovae events, but new studies done by scientists of the Max Planck Institute for Astrophysics (MPA) and affiliated to the Excellence Cluster Universe and of the Free University of Brussels (ULB) indicate they may be able to form during encounters with ejected matter from neutron stars.

”The source of about half of the heaviest elements in the Universe has been a mystery for a long time,“ says Hans-Thomas Janka, senior scientist at the Max Planck Institute for Astrophysics (MPA) and within the Excellence Cluster Universe. ”The most popular idea has been, and may still be, that they originate from supernova explosions that end the lives of massive stars. But newer models do not support this idea.“

Although it might take millions of years for such a tryst to take place, it’s not impossible for two neutron stars in a binary system to eventually meet. Scientists at the MPA and the ULB have now simulated all stages of the processes through computer modeling and taken note at the formation of chemical elements which are the offspring.

”In just a few split seconds after the merger of the two neutron stars, tidal and pressure forces eject extremely hot matter equivalent to several Jupiter masses,“ explains Andreas Bauswein, who carried out the simulations at the MPA. Once this so-called plasma has cooled to less than 10 billion degrees, a multitude of nuclear reactions take place, including radioactive decays, and enable the production of heavy elements. ”The heavy elements are `recycled’ several times in various reaction chains involving the fission of super-heavy nuclei, which makes the final abundance distribution become largely insensitive to the initial conditions provided by the merger model,“ adds Stephane Goriely, ULB researcher and nuclear astrophysics expert of the team.

Their findings agree well with observations of abundance distributions in both the Solar System and old stars. When compared with possible neutron star collisions occurring in the Milky Way, the conclusions are the same – this speculation could very well be the explanation for the distribution of heavier elements. The team plans on continuing their studies while on the look out “for detecting the transient celestial sources that should be associated with the ejection of radioactive matter in neutron star mergers.” Like a supernova event, the heat from the radioactive decay will shine like… well…

Gold in the dark.

Original Story Source: Max Planck Institut News. For Further Reading: R-process nucleosynthesis in dynamically ejected matter of neutron star mergers.