India’s First Mars Probe ‘MOM’ Blasts Free of Earth Joining MAVEN in Race to Red Planet

India’s Mars Orbiter Mission (MOM) swings around Earth on its final orbit and breaks free of the Home Planet following final engine burn on Dec. 1 placing her on Mars Transfer Trajectory in this artists concept. Credit: ISRO

CAPE CANAVERAL, FL – India’s first ever Mars probe ‘MOM’ successfully fired its main engine today (Dec. 1), blasting the craft free of the Earth’s sphere of influence forever to begin her nearly yearlong momentous voyage to the Red Planet.

Indian space engineers initiated the 440 Newton liquid fueled engine firing precisely as planned at 00:49 hrs (IST) on Sunday, Dec. 1, 2013 during a critical nail-biting burn lasting some 22 minutes.

The Trans Mars Insertion (TMI) firing propelled India’s Mars Orbiter Mission (MOM) away from Earth forever and placed the spacecraft on course for a rendezvous with the Red Planet on September 24, 2014 – where it will study the atmosphere and sniff for signals of methane.

Sunday’s Mars insertion burn imparted the vehicle with an incremental velocity of 647.96 meters per second (m/sec) consuming 198 kg of fuel.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

The maneuver dubbed ‘The mother of all slingshots’, enabled MOM to finally achieve escape velocity and catapulted the 1,350 kilogram (2,980 pound) spacecraft on an historic flight streaking towards Mars.

And in a rare but rather delightful coincidence, MOM is not alone on her remarkable Martian sojourn. Following the triumphant engine burn, she now joins NASA’s MAVEN orbiter in a gallant marathon race to the Red Planet.

MOM was designed and developed by the Indian Space Research Organization’s (ISRO) at a cost of $69 Million and marks India’s inaugural foray into interplanetary flight.

“The Earth orbiting phase of the spacecraft ended,” with this maneuver said ISRO.

MOM is healthy and all systems are functioning normally.

While MOM was cycling Earth, ISRO scientists and engineers activated and tested the probes systems and science payloads.

They also turned the crafts color camera homewards to capture the “First ever image of Earth Taken by Mars Color Camera,” according to ISRO.

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent.  Credit: ISRO
First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent. Credit: ISRO

MOM is nicknamed ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

MOM’s journey bagen with a picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota.

The PSLV booster precisely injected MOM into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

PSLV does not have sufficient thrust to send MOM streaking directly to the Red Planet.

Therefore since the flawless launch, the engine has been fired 6 times on November 7, 8, 9, 11, and 16 plus one supplementary maneuver to gradually raise the spacecrafts apogee from 23556 km to 192,874 km.

The most recent orbit raising maneuver occurred on Nov 16, 2013 with a burn time of 243.5 seconds and increased the apogee from 118,642 km to 192,874 km.

Liquid fueled engine fires and successfully propels MOM into Mars Transfer Trajectory on Dec. 1, 2013 and India into interplanetary space !  Credit: ISRO
Liquid fueled engine fires and successfully propels MOM into Mars Transfer Trajectory on Dec. 1, 2013 and India into interplanetary space ! Credit: ISRO

Today’s burn was the final one around Earth and absolutely crucial for setting her on course for Mars.

MOM was the first of two missions dispatched to Mars by Earthlings this November.

Half a world away, NASA’s MAVEN orbiter blasted off on Nov. 18 from Cape Canaveral Air Force Station, Florida atop an Atlas V booster on a direct path to the Red Planet.

The MOM spacecraft is now on traveling on a heliocentric elliptical trajectory to begin a 300 day long interplanetary voyage of more than 700 Million kilometers (400 Million miles) to the Red Planet.

Along the path to Mars, ISRO plans to conduct a series of Trajectory Correction Maneuvers (TCMs) using MOM’s Attitude and Orbit Control System (AOCS) thrusters to precisely navigate the probe to the point required to achieve orbit around the Red Planet

Following the ten month cruise through space the orbital insertion engine will fire for a do or die burn on September 24, 2014 placing MOM into an 377 km x 80,000 km elliptical orbit around Mars.

MOM will reach Mars vicinity just two days after MAVEN’s arrival on Sept. 22, 2014.

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Although MOM’s main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.

1452418_1402640509973889_477104420_n

India’s MOM – ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.

MAVEN could operate for a decade or longer and is also crucial for relaying images and data collected by NASA’s current and upcoming surface rovers and landers.

Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

Mother of All Slingshots Set to Hurl India’s MOM Probe to Mars

The Mother of all Slingshots is set for Dec. 1 when the main engine fires to propel India’s first interplanetary spacecraft to Mars. Credit: ISRO

CAPE CANAVERAL, FL – MOM – India’s first ever interplanetary spacecraft – is spending her last day around Mother Earth.

The clock is ticking down relentlessly towards “The mother of all slingshots” – the critical engine firing intended to hurl India’ Mars Orbiter Mission (MOM) probe on her ten month long interplanetary cruise to the Red Planet.

Engineers at the Indian Space Research Organization’s (ISRO) Mission Operations Complex at Bangalore are now just hours away from sending the commands that will ignite MOMs’ liquid fueled main engine for TMI – the Trans Mars Insertion maneuver that will propel MOM away from Earth forever and place the craft on an elliptical trajectory to the Red Planet.

“Performance assessment of all subsystems of the spacecraft has been completed,” reports ISRO.

The do or die 1351 second burn is slated to begin at 00:49 hrs IST tonight – on Dec. 1 Indian local time.

Mars Orbiter Mission (MOM) Mission Operations Complex of ISTRAC, at Bangalore, India. Credit: ISRO
Mars Orbiter Mission (MOM) Mission Operations Complex of ISTRAC, at Bangalore, India. Credit: ISRO

The 440 Newton liquid fueled main engine must fire precisely as planned to inject MOM on target to Mars.

MOM’s picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from the ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, precisely injected the spacecraft into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent.  Credit: ISRO
First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft currently orbiting Earth prior to upcoming Trans Mars Insertion. Image is focused on the Indian subcontinent. Credit: ISRO

Since then the engine has fired 6 times to gradually raise the spacecrafts apogee.

The most recent orbit raising maneuver occurred at 01:27 hrs (IST) on Nov 16, 2013 with a burn time of 243.5 seconds increased the apogee from 118,642 km to 192,874 km.

1455132_1401412373430036_247947321_n

Tonight burn is MOM’s final one around Earth and absolutely crucial for setting her on course for Mars.

If all goes well the $69 million MOM spacecraft reaches the vicinity of Mars on 24 September 2014.

MOM was the first of two Earth missions to Mars launched this November.

NASA’s $671 Million MAVEN orbiter launched as scheduled on Nov. 18, from Cape Canaveral, Florida and arrives at Mars on Sept. 22, 2014, about two days before MOM.

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

Curiosity Mars Rover Back in Action after Power Glitch

NASA's Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3, 2013. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

CAPE CANAVERAL, FL – NASA’s car sized Curiosity Mars rover has resumed full science operations and driving following a six day long halt to research activities due to concerns about an electrical power system glitch, which have now been resolved.

On Nov. 17, engineers noticed a fluctuation in voltage on Curiosity that caused the robots handlers to stop science activities and driving towards mysterious Mount Sharp while they searched for the root cause of the electrical issue.

NASA says that the voltage change did not impact the rovers safety or health and the team was acting out of an abundance of caution while investigating the situation from millions of miles away back on Earth.

“The vehicle’s electrical system has a “floating bus” design feature to tolerate a range of voltage differences between the vehicle’s chassis — its mechanical frame — and the 32-volt power lines that deliver electricity throughout the rover. This protects the rover from electrical shorts,” NASA said in a statement.

Curiosity’s voltage level had been about 11 volts since landing day and had declined to about 4 volts on Nov. 17. The electrical issue did not trigger the rover to enter a safe-mode status.

Curiosity scans the Martian landscape to the distant rim of Gale Crater landing site on Sol 463, November 2013.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
Curiosity scans the Martian landscape to the distant rim of Gale Crater landing site on Sol 463, November 2013. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Engineers amassed a list of possible causes for the voltage change while suspending science operations and roving across the Martian crater floor where Curiosity landed nearly a year and a half ago in August 2012.

“We made a list of potential causes, and then determined which we could cross off the list, one by one,” said rover electrical engineer Rob Zimmerman of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

NASA says that the likely cause is an internal short stemming from the Radioisotope Thermoelectric Generator (RTG) – the rovers nuclear power source.

RTG’s have been commonly used on many NASA missions that also experienced occasional shorts and that had no long term impact or loss of capability on their flights.

“This type of intermittent short has been seen in similar RTGs, including the one on the Cassini spacecraft, which has been orbiting Saturn for years. The rover electronics are designed to operate at variable power supply voltages, so this is not a major problem,” says Curiosity team member Ken Herkenhoff of the USGS in a mission update.

The voltage level had returned its normal level of 11 volts on its own by Nov. 23, when the team had decided to resume science operations.

So it is possible that the same type of intermittent voltage change could recur in the future.

Meanwhile the rover has resumed her epic trek to Mount Sharp and is expected to arrive at the base of the mountain sometime in mid-2014.

Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

This past weekend, the robot delivered additional portions of powdered rock to the CheMin and SAM labs inside the rover. The sample was collected 6 months ago after drilling into a rock nicknamed “Cumberland” and will supplement prior measurements.

Curiosity has already accomplished her primary science goal of discovering a habitable zone at her landing site.

Scientists expect to broaden the region of Martian habitability once the 1 ton robot begins the ascent of Mount Sharp to investigate the sedimentary layers in the lower reaches of the towering 3 mile (5 km) high mountain, that record Mars geologic and climatic history over a time span of billions of years.

Curiosity looks to the base of Mount Sharp and the Murray buttes - her ultimate climbing destination - in this mosaic assembled from of navcam camera images from Sol 465, November 2013.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
Curiosity looks to the base of Mount Sharp and the Murray buttes – her ultimate climbing destination – in this mosaic assembled from navcam camera images from Sol 465, November 2013. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

And as both of NASA’s rovers Curiosity and Opportunity ascend Martian mountains, they’ll be joined next September 2014 by a pair of new Martian orbiters from the US and India – MAVEN and MOM – that will significantly expand Earth’s invasion force at the Red Planet.

Stay tuned here for continuing Mars rover, MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

India’s MOM Mars Probe Images Earth’s Children Prior to Nail Biting Red Planet Insertion

First ever image of Earth Taken by Mars Color Camera aboard India’s Mars Orbiter Mission (MOM) spacecraft while orbiting Earth and before the Trans Mars Insertion firing on Dec. 1, 2013. Image is focused on the Indian subcontinent. Credit: ISRO

CAPE CANAVERAL, FL – MOM is looking at you, kid!

And if the spectacular new image of billions of Earth’s children captured by India’s Mars Orbiter Mission (MOM) is any indication (see above), then we can expect absolutely gorgeous scenes of the Red Planet once the groundbreaking probe arrives there in September 2014.

But despite all that’s been accomplished so far, the space drama is still in its infant stages – because MOM still needs to ignite her thrusters this weekend in order to achieve escape velocity, wave good bye to Earth forever and eventually say hello to Mars!

The picture – snapped from Earth orbit – is focused on the Indian subcontinent, the probes origin.

MOM has captured the imagination of space enthusiasts worldwide.

And she’s the pride of all India – as the country’s first ever interplanetary space mission.

During testing of the MOM probes payloads – while it’s still flying in a highly elliptical orbit around our Home Planet – engineers from India’s space agency turned the crafts camera homewards to capture the “First ever image of Earth Taken by Mars Color Camera,” according to the Indian Space Research Organization (ISRO).

The beautiful image was taken on Nov. 20 at around 1350 hrs (IST) from a height of almost 70,000 km above earth and has a spatial resolution of 3.5 km, said ISRO.

The image also gives a rather good approximation of what MOM’s color camera will actually see from apoapsis after reaching the Red Planet since the probe will enter a similarly highly elliptical orbit around Mars – ranging in altitude from 366 kilometers (km) x 80,000 kilometers (km).

MOM has just passed by its penultimate perigee.  With this, the final orbit of MOM around Earth begins! Credit: ISRO
MOM has just passed by its penultimate perigee. With this, the final orbit of MOM around Earth begins! Credit: ISRO

Following a 10 month interplanetary cruise, MOM is due to arrive in the vicinity of Mars on September 24, 2014 to study the Red Planets’ atmosphere.

At that time, the 440 Newton liquid fueled main engine must fire precisely as planned during the absolutely essential Mars orbital insertion burn to place the probe into orbit about Mars.

But before MOM can accomplish anything at Mars, she must first successfully fire her main engine – to complete the crucial departure from Earth and Trans Mars Insertion (TMI) scheduled for this Saturday!

MOM’s picture perfect Nov. 5 liftoff atop India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV) C25 from the ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, precisely injected the spacecraft into an initial elliptical Earth parking orbit of 247 x 23556 kilometers with an inclination of 19.2 degrees.

Since then the engine has fired 6 times to gradually raise the spacecrafts apogee.

The most recent orbit raising maneuver occurred at 01:27 hrs (IST) on Nov 16, 2013 with a burn time of 243.5 seconds increased the apogee from 118,642 km to 192,874 km.

The nail-biting final main engine burn of 1351 seconds is set for this weekend on Dec. 1. It will place MOM on a precise interplanetary trajectory to the Red Planet.

Graphic of MOM approaching its penultimate perigee pass on Nov 26. Credit: ISRO
Graphic of MOM approaching its penultimate perigee pass on Nov 26. Credit: ISRO

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

The low cost $69 Million MOM mission is the first of two new Mars orbiter science probes from Earth that flawlessly blasted off for the Red Planet this November.

Half a world away, NASA’s $671 Million MAVEN orbiter launched as scheduled on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere, unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist Prof. Bruce Jakosky told Universe Today.

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN and SpaceX Falcon 9 launch reports from on site at the Kennedy Space Center press center and Cape Canaveral Air Force Station, Florida.

Ken Kremer

…………….

Learn more about MOM, MAVEN, Mars rovers, SpaceX, Orion and more at Ken’s upcoming presentations

Nov 28: “SpaceX launch, MAVEN & MOM Mars Launches and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN, MOM and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

NASA’s STEREO Spacecraft Spots Comets ISON and Encke

Comet ISON entered the STEREO scene with Encke on Nov. 21 (Credit: Karl Battams/NASA/STEREO/CIOC)

As comets ISON and Encke continue toward their respective rendezvous with the Sun, they have now both been captured on camera by NASA’s solar-observing STEREO spacecraft. The image above, taken on Nov. 21 (UT) with STEREO-A’s high-resolution HI-1 camera, shows ISON as it enters the field of view from the left. Encke is at center, while the planets Mercury and Earth (labeled) are bright enough to cause vertical disruptions in the imaging sensors. (The Sun is off frame to the right.)

As cool as this image is, it gets even better: there’s a video version. Check it out below:

Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)
Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)

The dark “clouds” coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke’s tail. (Source)

The position of NASA's STEREO spacecraft relative to Earth and the Sun on Nov. 22
The position of NASA’s STEREO spacecraft relative to Earth and the Sun on Nov. 22

It’s fascinating to watch how the solar wind shapes and affects the tail of comet Encke… as ISON moves further into view, I’m sure we’ll see similar disruptions in its tail as well. (And look what STEREO-A saw happen to Encke’s tail back in 2007!)

Encke reached the perihelion of its 3.3-year-long orbit on Nov. 21; newcomer ISON will arrive at its on Nov. 28. While it seems to be holding together quite well in these STEREO images, what happens when it comes within 730,000 miles of the Sun next week is still anybody’s guess.

Read more: Whoa, Take a Look at Comet ISON Now!

MAVEN thunders to Space on Journey to Study Red Planet’s Watery History and Potential for Life

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) space probe thundered to space today (Nov. 18) following a flawless blastoff from Cape Canaveral Air Force Station’s Space Launch Complex 41 at 1:28 p.m. EST atop a powerful Atlas V rocket.

“Hey Guys we’re going to Mars!” gushed Bruce Jakosky, MAVEN’s Principal Investigator at a post launch briefing for reporters.

“Now I am a Martian,” beamed Jakosky gleefully, as well as is everyone else who has worked on MAVEN since the project was conceived some ten years ago, he noted.

Today’s countdown was absolutely perfect culminating in a spectacular and on time lift off that rumbled across the Florida Space Coast to the delight of cheering crowds assembled for the historic launch aimed at discovering the history of water and habitability stretching back over billions of years on Mars.

“I take great pride in the entire team,” said Jakosky.

“Everyone was absolutely committed to making this work.”

MAVEN launches atop Atlas V booster on Nov. 18, 2013 from NASA’s Kennedy Space Center, Florida.  Credit: Mike Killian/mikekillianphotography.com
MAVEN launches atop Atlas V booster on Nov. 18, 2013 from NASA’s Kennedy Space Center, Florida. Credit: Mike Killian/mikekillianphotography.com

The $671 Million MAVEN spacecraft separated from the Atlas Centaur upper stage some 52 minutes after liftoff, unfurled its wing like solar panels to produce life giving power and thus began a 10 month interplanetary voyage to the Red Planet.

“We’re currently about 14,000 miles away from Earth and heading out to the Red Planet right now,” said MAVEN Project Manager David Mitchell of NASA’s Goddard Space Flight Center at the briefing, after the 5,400-pound spacecraft had been soaring through space for barely two and a half hours.

“The first trajectory correction maneuver (TCM) is set for Dec. 3,” added Mitchell. There are a minimum of four TCM’s to ensure that the majestic probe remains precisely on course for Mars.

“Safe travels MAVEN!” said Mitchell. “We’re with you all the way.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

It will take the spacecraft 10 months to reach the Red Planet, with arrival scheduled for Sept. 22, 2014.

Jakosky noted that while the launch is a big milestone, it’s just the beginning.

MAVEN’s purpose is to accomplish world class science after arriving at Mars and completing a check-out period before it can finally begin collecting science data.

MAVEN will answer key questions about the evolution of Mars, its geology and the potential for the evolution of life.

“MAVEN is an astrobiology mission,” says Jakosky.

Mars was once wet billions of years ago, but no longer. Now it’s a cold arid world, not exactly hospitable to life.

“We want to determine what were the drivers of that change?” said Jakosky. “What is the history of Martian habitability, climate change and the potential for life?”

MAVEN will study Mars upper atmosphere to explore how the Red Planet may have lost its atmosphere over billions of years. It will measure current rates of atmospheric loss to determine how and when Mars lost its atmosphere and water.

The MAVEN probe carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

“We need to know everything we can before we can send people to Mars,” said Dr. Jim Green, NASA’s Director of Planetary Science at NASA HQ in Washington, DC.

“MAVEN is a key step along the way. And the team did it under budget!” Green elaborated. “It is so exciting!”

Dr. Jim Green (4th from left), NASA’s Director of Planetary Science poses with space journalists and photographers covering the Nov. 18 MAVEN launch at the Kennedy Space Center, including Ken Kremer (left) from Universe Today/RocketSTEM Media Foundation.  Credit: Alan Walters/awaltersohoto.com
Dr. Jim Green (5th from left), NASA’s Director of Planetary Science, poses with MAVEN spacecraft model and space journalists and photographers covering the Nov. 18 MAVEN launch at the Kennedy Space Center – including Ken Kremer (left) from Universe Today/RocketSTEM Media Foundation. Credit: Alan Walters/awaltersohoto.com

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes at altitudes ranging from 93 miles to more than 3,800 miles.

MAVEN will execute five deep dip maneuvers during the first year, descending to an altitude of 78 miles. This marks the lower boundary of the planet’s upper atmosphere.

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 18-21: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Star Trek’s Geordi LeForge Explains NASA’s new MAVEN Mars Orbiter

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA
Watch the PSA below[/caption]

KENNEDY SPACE CENTER, FL – Star Trek actor and space enthusiast LeVar Burton stars in a new action packed NASA public service announcement (PSA) about the agency’s next Mars-bound spacecraft, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft slated for blast off in barely two days time on Nov. 18 from the Florida Space Coast.

Burton played the beloved character of chief engineer ‘Geordi LeForge’ aboard the legendary Starship Enterprise on “Star Trek: The Next Generation” – known by audiences worldwide.

And Burton gives an appropriately other worldly narration in the NASA PSA containing exciting new animations explaining the goals and science behind the MAVEN Mars orbiter and how it will accomplish its tasks.

I was privileged to meet chief engineer ‘Geordi LeForge’ at a prior NASA launch event.

He is genuinely and truly dedicated to advancing science and education through his many STEM initiatives and participation in educational programming like the NASA PSA.

MAVEN will study the Red Planet’s atmosphere like never before and in unprecedented detail and is the first mission dedicated to studying Mars upper atmosphere.

MAVEN’s is aimed at unlocking one of the greatest Martian mysteries; Where did all the water go ? And when did the Red Planet’s water and atmosphere disappear ?

MAVEN’s suite of nine science instruments will help scientists understand the history, mechanism and causes of the Red Planet’s dramatic climate change over billions of years.

Burton’s PSA will be used at MAVEN scheduled events around the country and will also be shared on the web and social media, according to NASA. The goal is to educate the public about MAVEN and NASA’s efforts to better understand the Red Planet and the history of climate change there.

Be sure to check out the new video – below:



Video caption: NASA is returning to Mars! This NASA Public Service Announcement regarding the MAVEN mission is presented by LeVar Burton in which he shares the story about NASA’s Mars Atmosphere and Volatile Evolution mission—or MAVEN—and how it will explore Mars’ climate history and gather clues about the question scientists have been asking for decades. MAVEN will look at specific processes at Mars that led to the loss of much of its atmosphere…and MAVEN data could tell scientists a lot about the history of climate change on the Red Planet.

“NASA is thrilled to have LeVar Burton explain this mission to the greater public,” said Bert Ulrich, NASA’s multimedia liaison for film and TV collaborations in a NASA statement. “Thanks to Burton’s engaging talents and passion for space exploration, audiences of all ages will be able to share in the excitement of NASA’s next mission to Mars.”

MAVEN is targeted to launch Monday, Nov. 18 at 1:28 p.m. EST atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

You can watch the launch live on NASA TV

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Weekly Space Hangout – November 15, 2013

Host: Fraser Cain

Guests: Jason Major & David Dickinson

Jason Major on:
Awesome New Image from Cassini
Mars Was Earthlike Millions of Years Ago

David Dickinson on:
Comet R1 LoveJoy at its brightest
Leonid Meteors this weekend
MAVEN Launches on Monday

Fraser Cain on:
Reminder re: Comet ISON photo contest
Cory Schmitz’ Aurora Photos
Curiosity’s Journey to Mount Sharpe
The Moon Has Bigger Craters on the Near Side
Super Typhoon Haiyan from Space
Two Workers Killed in Plesetsk

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

MAVEN’s Quest – Where Did Mars Water Go?

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare the MAVEN spacecraft for encapsulation inside its payload fairing. Credit: NASA/Kim Shiflett

KENNEDY SPACE CENTER, FL – MAVEN, NASA’s next spacecraft launching to the Red Planet in barely three days time on Nov. 18 seeks to unlock one of the greatest Martian mysteries; Where did all the water go ?

From the accumulated evidence so far scientists believe that billions of years ago, Mars was gifted with a thick atmosphere like Earth and liquid water flowed across the surface.

The Red Planet was far bluer, warmer, wetter and hospitable to life four billion years ago – truly a lot more Earth-like.

And then Mars lost its atmosphere starting somewhere around 3.5 to 3.7 Billion years ago. As the atmosphere thinned and the pressure decreased, the water evaporated and Mars evolved into the cold arid world we know today.

But why and exactly when did Mars undergo such a radical climatic transformation?

“Where did the water go and where did the carbon dioxide go from the early atmosphere? What were the mechanisms?” asks Bruce Jakosky, MAVEN’s Principal Investigator from the University of Colorado at Boulder

MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center.  With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars.  Credit: Ken Kremer/kenkremer.com
MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars. Credit: Ken Kremer/kenkremer.com

Although there are lots of theories, NASA’s MAVEN Mars orbiter – which stands for Mars Atmosphere and Volatile Evolution – is the first real attempt to investigating these fundamental questions that hold the key to solving the Martian mysteries perplexing the science community.

“We don’t know the driver of the change,” explains Jakosky.

MAVEN Mated to Atlas. On  Nov. 8,2013, NASA's Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Launch Complex 41. Credit: NASA/Kim Shiflett
MAVEN Mated to Atlas. On Nov. 8,2013, NASA’s Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Launch Complex 41. Credit: NASA/Kim Shiflett
By studying and understanding specific processes in the upper atmosphere of Mars, MAVEN’s seeks to determine how and why Mars atmosphere and water disappeared billions of years ago and what effect that had on the history of climate change and habitability.

“The major questions about the history of Mars center on the history of its climate and atmosphere and how that’s influenced the surface, geology and the possibility for life,” says Jakosky.

MAVEN is equipped with three instrument suites holding nine science instruments

MAVEN will focus on understanding the history of the atmosphere, how the climate has changed through time, and how that influenced the evolution of the surface and the potential for habitability by microbes on Mars.”

“That’s what driving our exploration of Mars with MAVEN,” said Jakosky

The 5,400 pound MAVEN probe carries nine sensors in three instrument suites.

MAVEN Spacecraft Positioned Atop Atlas V Rocket  at Launch Complex 41 on Cape Canaveral. Credit: NASA
MAVEN Spacecraft Positioned Atop Atlas V Rocket at Launch Complex 41 on Cape Canaveral. Credit: NASA
The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

I personally inspected MAVEN inside the clean room at the Kennedy Space Center on Sept. 27 with fellow journalists when the solar arrays were fully unfurled.

The probe spanned 37 feet in length from wingtip to wingtip.

Since then MAVEN has been folded and encapsulated inside the payload fairing, transported to the pad at Launch Complex 41 and hoisted on top of the Atlas V rocket on Cape Canaveral Air Force Station (CCAFS) in Florida.

The $671 Million MAVEN spacecraft has been powered on and awaits liftoff.

MAVEN is the second of two Mars bound probes launching from Earth this November.

India’s Mars Orbiter Mission (MOM) spacecraft staged a spectacular lift off from the Indian spaceport on Nov. 5. Both probes are due to arrive at the Red Planet in September 2014.

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

New Animation Shows How Mars was Like Earth Billions of Years Ago

Artist concept of an ancient, habitable Mars capable of supporting liquid water on its surface. Credit: Michael Lentz/NASA's Goddard Space Flight Center Conceptual Image Lab

4 billion years ago, the atmosphere of Mars could have been rich in oxygen and thick enough and warm enough to support oceans of liquid water – a critical ingredient for life. A new animation from the Goddard Space Flight Center shows how the surface of Mars might have appeared during this ancient clement period. The artist’s concept video, below, is based on evidence that Mars was once very different and perhaps very Earth-like.

This past summer, a paper studying the compositions of Martian meteorites found on Earth and data from NASA’s rovers suggested that Mars had an oxygen-rich atmosphere very early in the history of the planet.

Scientists have long thought that the ancient riverbeds and what appear to be shorelines provide hints that Mars once supported oceans of water. But there’s not much indication of how the Red Planet was stripped of its thick atmosphere, roughly 3.7 billion years ago.

The end of the video shows the MAVEN spacecraft, the Mars Atmosphere and Volatile Evolution mission, orbiting Mars. This spacecraft is scheduled to launch on Nov. 18, 2013, and it will investigate how Mars lost its atmosphere. It should reach the planet in September 2014.

Below is another new video from NASA, featuring LeVar Burton talking about MAVEN.