Could Martian atmospheric samples teach us more about the Red Planet than surface samples?

Image of the Martian atmosphere and surface obtained by the Viking 1 orbiter in June 1976. (Credit: NASA/Viking 1)

NASA is actively working to return surface samples from Mars in the next few years, which they hope will help us better understand whether ancient life once existed on the Red Planet’s surface billions of years ago. But what about atmospheric samples? Could these provide scientists with better information pertaining to the history of Mars? This is what a recent study presented at the 55th Lunar and Planetary Science Conference hopes to address as a team of international researchers investigated the significance of returning atmospheric samples from Mars and how these could teach us about the formation and evolution of the Red Planet.

Continue reading “Could Martian atmospheric samples teach us more about the Red Planet than surface samples?”

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

Starlink satellites in Earth orbit, under consideration for Mars
An artist's conception shows Starlink satellites in orbit. Credit: SpaceX

NASA has given the go-ahead for SpaceX to work out a plan to adapt its Starlink broadband internet satellites for use in a Martian communication network.

The idea is one of a dozen proposals that have won NASA funding for concept studies that could end up supporting the space agency’s strategy for bringing samples from Mars back to Earth for lab analysis. The proposals were submitted by nine companies — also including Blue Origin, Lockheed Martin, United Launch Alliance, Astrobotic, Firefly Aerospace, Impulse Space, Albedo Space and Redwire Space.

Awardees will be paid $200,000 to $300,000 for their reports, which are due in August. NASA says the studies could lead to future requests for proposals, but it’s not yet making any commitment to follow up.

Continue reading “Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea”

The Current Mars Sample Return Mission isn’t Going to Work. NASA is Going Back to the Drawing Board

Mars Sample Return mission

Human spaceflight is not the easiest of enterprises. NASA have let us know that their plans for the Mars Sample Return Mission have changed. The original plan was to work with ESA to collect samples from Perseverance and return them to Earth by 2031. Alas like many things, costs were increasing and timescales were slipping and with the budget challenges, NASA has had to rework their plan. Administrator Bill Nelson has now shared a simpler, less expensive and less risk alternative.

Continue reading “The Current Mars Sample Return Mission isn’t Going to Work. NASA is Going Back to the Drawing Board”

Perseverance Finds its Dream Rock

This Martian rock, named Bunsen Peak, contains minerals that formed in the presence of water. On Earth, these water-deposited carbonate minerals are good at preserving ancient organic material. Image Credit: NASA/JPL-Caltech

If there’s a Holy Grail on Mars, it’s probably a specific type of rock: A rock so important that it holds convincing clues to Mars’ ancient habitability.

Perseverance might have just found it.

Continue reading “Perseverance Finds its Dream Rock”

Perseverance is Keeping Track of the Big Picture While it’s Exploring Mars

Illustration of Perseverance on Mars

It’s always a real benefit to have scientists on the ground, able to use the wealth of their experience and ingenuity to ‘think on their feet’.  It is therefore always quite challenging to use space probes that to a degree need to be autonomous. This is certainly true of the NASA Perseverance Rover that has been drilling core samples that will one day (hopefully) be returned to Earth as part of the Mars Sample Return mission. Until then, a team of Geologists have developed a technique to calculate the orientation of the core samples to help with future analysis. 

Continue reading “Perseverance is Keeping Track of the Big Picture While it’s Exploring Mars”

Grabbing Samples from the Surface of Mars

ESA's Sample Return Mission arm

As if the Mars Perseverance Rover and Ingenuity Drone were not exciting enough then the next step in this audacious mission takes it to a whole new level. Mars Sample Return Mission is to follow along, collect and return the samples collected by Perseverance back to Earth. However the status of Mars Sample Return is uncertain as engineers are still working on technology to retrieve the samples. The current challenge is the gripper arm that will collect the samples and stow them safely and securely before transportation without damaging them. 

Continue reading “Grabbing Samples from the Surface of Mars”

NASA’s JPL Lays Off Hundreds of Workers

NASA's JPL announced a quick reduction in its workforce, putting missions like Mars Sample Return in jeopardy. Image Credit: NASA/JPL/Caltech

In a disheartening turn of events, NASA’s Jet Propulsion Laboratory has announced that it’s laying off about 8% of its workforce. That means that about 530 JPL employees will be let go, along with about 40 employees of the Lab’s contractors. That sucks for the people being let go, but the bigger concern for the rest of us is what will happen to upcoming missions like Mars Sample Return (MSR)?

Continue reading “NASA’s JPL Lays Off Hundreds of Workers”

Even Tiny Amounts of DNA on Mars Will Be Detectable

The Perseverance Mars rover took this selfie with several of the 10 sample tubes it deposited on the Image Credit: NASA/JPL-Caltech/MSSS.

The Search for Life is focused on the search for biosignatures. Planetary life leaves a chemical fingerprint on a planet’s atmosphere, and scientists are trying to work out which chemicals in what combinations and amounts are a surefire indicator of life. Martian methane is one they’re puzzling over right now.

But new evidence suggests that super-tiny amounts of DNA can be detected in Martian rocks if it’s there. And though it requires physical samples rather than remote sensing, it’s still an intriguing development.

Continue reading “Even Tiny Amounts of DNA on Mars Will Be Detectable”

How are Mars Rocks Getting “Shocked” by Meteorite Impacts?

Jezero Crater on Mars is the landing site for NASA's Mars 2020 rover. Image Credit: NASA/JPL-Caltech/ASU

On Mars, NASA’s Perseverance rover is busy collecting rock samples that will be retrieved and brought back to Earth by the Mars Sample Return (MSR) mission. This will be the first sample-return mission from Mars, allowing scientists to analyze Martian rocks directly using instruments and equipment too large and cumbersome to send to Mars. To this end, scientists want to ensure that Perseverance collects samples that satisfy two major science goals – searching for signs of life (“biosignatures”) and geologic dating.

To ensure they select the right samples, scientists must understand how rock samples formed and how they might have been altered over time. According to a new NASA study, Martian rocks may have been “shocked” by meteorite impacts during its early history (the Late Heavy Bombardment period). The role these shocks played in shaping Martian rocks could provide fresh insights into the planet’s geological history, which could prove invaluable in the search for evidence of past life on Mars.

Continue reading “How are Mars Rocks Getting “Shocked” by Meteorite Impacts?”

Samples Returned From Mars Will be Protected by a Micrometeorite Shield

Micrometeorites are a potential hazard for any space mission, including NASA’s Mars Sample Return. Credits: NASA

In a few years, NASA and the ESA will conduct the long-awaited Mars Sample Return (MSR) mission. This mission will consist of a lander that will pick up the samples, an ascent vehicle that will send them to orbit, an orbiter that will return them to Earth, and an entry vehicle that will send them to the surface. This will be the first time samples obtained directly from Mars will be returned to Earth for analysis. The research this will enable is expected to yield new insights into the history of Mars and how it evolved to become what we see today.

Returning these samples safely to Earth requires that protective measures be implemented at every step, including transfer, ascent, transit, and re-entry. This is especially true when it comes to the Earth Entry System (EES), the disk-shaped vehicle that will re-enter Earth’s atmosphere at the end of the mission. In addition to a heat shield, engineers at NASA’s White Sands Test Facility (WSTF) near Las Cruces, New Mexico, are busy testing shielding that will protect the vehicle from micrometeorites and space debris during transit back to Earth and during re-entry.

Continue reading “Samples Returned From Mars Will be Protected by a Micrometeorite Shield”