Dust Particles in the Martian Atmosphere can Create Static Electricity, but not Enough to Endanger the Rovers

Lightning is one of the most powerful forces in nature.  Up to 1 billion volts of electricity can flow into a strike in less than a second.  Such a large energy buildup can be created by even a relatively simple cause – two particles rubbing together.  A team at the University of Oregon has now studied whether those simple interactions might cause lightning on a place it hasn’t been seen before – on Mars.

Continue reading “Dust Particles in the Martian Atmosphere can Create Static Electricity, but not Enough to Endanger the Rovers”

Thanks to Perseverance, We’re Finally Going to Hear What Mars Sounds Like

Many consider the various rovers we’ve sent to Mars as the next best thing to sending a geologist to the Red Planet. Spirit, Opportunity and Curiosity have carried all the necessary equipment similar to what human geologists use on Earth, and are able to navigate the terrain, “see” the landscape with the various cameras, pick up rock and dust samples with scoops, and then analyze them with various onboard tools and equipment.

In addition to all those things, the new Mars 2020 Perseverance rover will add a “sense of hearing” to its robotic toolkit. The rover includes a pair of microphones to let us hear – for the first time – what Mars really sounds like.

Continue reading “Thanks to Perseverance, We’re Finally Going to Hear What Mars Sounds Like”

The Driest Place on Earth Could Help Predict How Life Might be Surviving on Mars

In the next few years, Mars will be visited by three new rovers, the Perseverance, Tianwen-1, and Rosalind Franklin missions. Like their predecessors – Pathfinder and Sojourner, Spirit and Opportunity, and Curiosity – these robotic missions will explore the surface, searching for evidence of past and present life. But even after years of exploring, an important question remains: where is the best place to look?

To date, all attempts to find evidence of life on the surface have yielded nothing, owing to the fact that the Martian environment is extremely cold, desiccated, and irradiated. According to a new study by an international team of researchers led by Cornell University and the Centro de Astrobiología in Madrid, the Atacama desert in the mountains of Chile could hold the answer.

Continue reading “The Driest Place on Earth Could Help Predict How Life Might be Surviving on Mars”

Rovers Will be Starting to Make Their Own Decisions About Where to Search for Life

We all know how exploration by rover works. The rover is directed to a location and told to take a sample. Then it subjects that sample to analysis and sends home the results. It’s been remarkably effective.

But it’s expensive and time-consuming to send all this data home. Will this way of doing things still work? Or can it be automated?

Continue reading “Rovers Will be Starting to Make Their Own Decisions About Where to Search for Life”

Scientists Search for Ancient Fossils in Australia, Practicing the Techniques They’ll Use on Mars

NASA’s Mars 2020 Rover is heading to Mars soon to look for fossils. The ESA/Roscosmos ExoMars rover is heading to Mars in the same time-frame to carry out its own investigations into Martian habitability. To meet their mission objectives, the scientists working the missions will need to look at a lot of rocks and uncover and understand the clues those rocks hold.

To help those scientists prepare for the daunting task of analyzing and understanding Martian rocks from 160 million km (100 million miles) away, they’ve gone on a field trip to Australia to study stromatolites.

Continue reading “Scientists Search for Ancient Fossils in Australia, Practicing the Techniques They’ll Use on Mars”

It’s Decided, the Mars 2020 Rover Will Land in Jezero Crater

After 5 years and 60 candidates, NASA has chosen Jezero crater as the landing site for the Mars 2020 rover. Image Credit: NASA/JPL/JHUAPL/MSSS/Brown University

Jezero crater is the landing spot for NASA’s upcoming 2020 rover. The crater is a rich geological site, and the 45 km wide (28 mile) impact crater contains at least five different types of rock that the rover will sample. Some of the landform features in the crater are 3.6 billion years old, making the site an ideal place to look for signs of ancient habitability.

Continue reading “It’s Decided, the Mars 2020 Rover Will Land in Jezero Crater”