The Magnetic Fields Swirling Within the Whirlpool Galaxy

Messier objects are some of the most imaged objects in the universe.  In part that’s because many of them are so visibly appealing.  A good example of that is the Whirlpool galaxy, M51, which recently received an even more dramatic visual representation with a new photo released by NASA.  In it, the magnetic fields that are holding the galaxy together and tearing it apart at the same time are clearly visible.  And it is even more stunning to look at.

Continue reading “The Magnetic Fields Swirling Within the Whirlpool Galaxy”

How The Sun’s Scorching Corona Stays So Hot


We’ve got a mystery on our hands. The surface of the sun has a temperature of about 6,000 Kelvin – hot enough to make it glow bright, hot white. But the surface of the sun is not its last later, just like the surface of the Earth is not its outermost layer. The sun has a thin but extended atmosphere called the corona. And that corona has a temperature of a few million Kelvin.

How does the corona have such a higher temperature than the surface?

Like I said, a mystery.

Continue reading “How The Sun’s Scorching Corona Stays So Hot”

Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!

Host: Fraser Cain (@fcain)


Morgan Rehnberg ( / @MorganRehnberg )
Pamela Gay ( / @cosmoquestx / @starstryder)
Kimberly Cartier (@AstroKimCartier )
Brian Koberlein (@briankoberlein /
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!”

Could We Terraform a Black Hole?

Is there any possible way to take a black hole and terraform it to be a place we could actually live?

In the challenge of terraforming the Sun, we all learned that outside of buying a Dyson Spaceshell 2000 made out of a solar system’s worth of planetbutter, it’s a terrible idea.

Making a star into a habitable world, means first destroying the stellar furnace. Which isn’t good for anyone, “Hey, free energy! vs. Let’s wreck this thing and build houses!”

Doubling down on this idea, a group of brilliant Guidensians wanted to crank the absurdity knob all the way up. You wanted to know if it would be possible to terraform a black hole.

In order to terraform something, we convert it from being Britney Spears’ level of toxic into something that humans can comfortably live on. We want reasonable temperatures, breathable atmosphere, low levels of radiation, and Earthish gravity.

With temperatures inversely proportional to their mass, a solar mass black hole is about 60 billionths of a Kelvin. This is just a smidge over absolute zero. Otherwise known as “pretty damn” cold. Actively feeding black holes can be surrounded by an accretion disk of material that’s more than 10 million degrees Kelvin, which would also kill you. Make a note, fix the temperature.

There’s no atmosphere, and it’s either the empty vacuum of space, or the superheated plasma surrounding an actively feeding black hole. Can you breathe plasma? If the answer is yes, this could work for you. If not, we’ll need to fix that.

You’d be hard pressed to find a more lethal radiation source in the entire Universe.

Black holes can spin at close to the speed of light, generating massive magnetic fields. These magnetic fields whip high energy particles around them, creating lethal doses of radiation. There are high energy particle jets pouring out of some supermassive black holes, moving at nearly the speed of light. You don’t want any part of that. We’ll add that to the list.

Black holes are known for being an excellent source of vitamin gravity. Out in orbit, it’s not so bad. Replace our Sun with a black hole of the same mass, and you wouldn’t be able to tell the difference.

So, problem solved? Not quite. If you tried to walk on the surface, you’d get shredded into a one-atom juicy stream of extruded tubemanity before you got anywhere near the time traveling alien library at the caramel center.

Reduce the gravity. Got it.

Artist rendering of a supermassive black hole. Credit: NASA / JPL-Caltech.
Artist rendering of a supermassive black hole. Credit: NASA / JPL-Caltech.

As we learned in a previous episode on how to kill black holes, there’s nothing you can do to affect them. You couldn’t smash comets into it to give it an atmosphere, it would just turn them into more black hole. You couldn’t fire a laser to extract material and reduce the mass, it would just turn your puny laser into more black hole.

Antimatter, explosives, stars, rocks, paper, scissors…black hole beats them all.

Repeat after me. “Om, nom, nom”.

All we can do is wait for it to evaporate over incomprehensible lengths of time. There are a few snags with this strategy, such as it will remain as a black hole until the last two particles evaporate away. There’s no point where it would magically become a regular planetoid.

That’s a full list of renovations for the cast and crew of “Pimp my Black Hole”.

Let’s look at our options. You can move it, just like we can move the Earth. Throw stuff really close to a black hole, and you get it moving with gravity. You could make it spin faster by dropping stuff into it, right up until it’s rotating at the edge of the speed of light, and you can make it more massive.

With that as our set of tools, there’s no way we’re ever going to live on a black hole.

It could be possible to surround a black hole with a Dyson Sphere, like a star.

Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit:
Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit:

It turns out there’s a way to have a pet black hole pay dividends aside from eating all your table scraps, shameful magazines and radioactive waste. By dropping matter into a black hole that’s spinning at close to the speed of light, you can actually extract energy from it.

Imagine you had an asteroid that was formed by two large rocks. As they get closer and closer to the black hole, tidal forces tear them apart. One chunk falls into the black hole, the smaller remaining rock has less collective mass, which allows it to escape. This remaining rock steals rotational energy from the black hole, which then slows down the rotation just a little bit.

This is the Penrose Process, named after the physicist who developed the idea. Astronomers calculated you can extract 20% of pure energy from matter that you drop in.

There’s isn’t much out there that would give you better return on your investment.

Also, it’s got to have a similar satisfying feeling as dropping pebbles off a bridge and watching them disappear from existence.

Terraforming a black hole is a terrible idea that will totally get us all killed. Don’t do it.

If you have to get close to that freakish hellscape I do recommend surrounding your pet with a Dyson Sphere and then feeding it matter and enjoying the energy you get in return.

A futuristic energy hungry civilization bent on evil couldn’t hope for a better place to live.

Have you got any more questions about black holes? Give us your suggestions in the comments below.

How Do Planets Form? Semarkona Meteorite Shows Some Clues

It may seem all but impossible to determine how the Solar System formed, given that it happened roughly 4.5 billion years ago. Luckily, much of the debris that was left over from the formation process is still available today for study, circling our Solar System in the form of rocks and debris that sometimes make their way to Earth.

Among the most useful pieces of debris are the oldest and least altered type of meteorites, which are known as chondrites. They are built mostly of small stony grains, called chondrules, that are barely a millimeter in diameter.

And now, scientists are being provided with important clues as to how the early Solar System evolved, thanks to new research based on the the most accurate laboratory measurements ever made of the magnetic fields trapped within these tiny grains.

To break it down, chondrite meteorites are pieces of asteroids — broken off by collisions — that have remained relatively unmodified since they formed during the birth of the Solar System. The chondrules they contain were formed when patches of solar nebula – dust clouds that surround young suns – was heated above the melting point of rock for hours or even days.

The dust caught in these “melting events” was melted down into droplets of molten rock, which then cooled and crystallized into chondrules. As chondrules cooled, iron-bearing minerals within them became magnetized by the local magnetic field in the gas cloud. These magnetic fields are preserved in the chondrules right on up to the present day.

A slice of the NWA 5205 meteorite from the Sahara Desert displays wall-to-wall chondrules. Credit: Bob King
A slice of the NWA 5205 meteorite from the Sahara Desert displays wall-to-wall chondrules. Credit: Bob King

The chondrule grains whose magnetic fields were mapped in the new study came from a meteorite named Semarkona – named after the town in India where it fell in 1940.

Roger Fu of MIT – working under Benjamin Weiss – was the chief author of the study; with Steve Desch of Arizona State University’s School of Earth and Space Exploration attached as co-author.

According to the study, which was published this week in Science, the measurements they collected point to shock waves traveling through the cloud of dusty gas around the newborn sun as a major factor in solar system formation.

“The measurements made by Fu and Weiss are astounding and unprecedented,” says Steve Desch. “Not only have they measured tiny magnetic fields thousands of times weaker than a compass feels, they have mapped the magnetic fields’ variation recorded by the meteorite, millimeter by millimeter.”

The scientists focused specifically on the embedded magnetic fields captured by “dusty” olivine grains that contain abundant iron-bearing minerals. These had a magnetic field of about 54 microtesla, similar to the magnetic field at Earth’s surface (which ranges from 25 to 65 microtesla).

Coincidentally, many previous measurements of meteorites also implied similar field strengths. But it is now understood that those measurements detected magnetic minerals that were contaminated by the Earth’s own magnetic field, or even from the hand magnets used by the meteorite collectors.

Artist depiction of a protoplanetary disk permeated by magnetic fields. Objects in the foregrounds are millimeter-sized rock pellets known as chondrules.  Credit: Hernán Cañellas
Artist depiction of a protoplanetary disk permeated by magnetic fields. Objects in the foregrounds are millimeter-sized rock pellets known as chondrules.
Credit: Hernán Cañellas

“The new experiments,” Desch says, “probe magnetic minerals in chondrules never measured before. They also show that each chondrule is magnetized like a little bar magnet, but with ‘north’ pointing in random directions.”

This shows, he says, that they became magnetized before they were built into the meteorite, and not while sitting on Earth’s surface. This observation, combined with the presence of shock waves during early solar formation, paints an interesting picture of the early history of our Solar System.

“My modeling for the heating events shows that shock waves passing through the solar nebula is what melted most chondrules,” Desch explains. Depending on the strength and size of the shock wave, the background magnetic field could be amplified by up to 30 times. “Given the measured magnetic field strength of about 54 microtesla,” he added, “this shows the background field in the nebula was probably in the range of 5 to 50 microtesla.”

There are other ideas for how chondrules might have formed, some involving magnetic flares above the solar nebula, or passage through the sun’s magnetic field. But those mechanisms require stronger magnetic fields than what has been measured in the Semarkona samples.

This reinforces the idea that shocks melted the chondrules in the solar nebula at about the location of today’s asteroid belt, which lies some two to four times farther from the sun than the Earth’s orbits.

Desch says, “This is the first really accurate and reliable measurement of the magnetic field in the gas from which our planets formed.”

Further Reading: ASU

Detecting the Magnetic Fields of Exoplanets May Help Determine Habitability

Astronomers may soon be able to observe the shockwaves between the magnetic fields of exoplanets and the flow of particles from the stars they orbit.

Magnetic fields are crucial to a planet’s (and as it turns out a moon’s) habitability. They act as protective bubbles, preventing harmful space radiation from stripping away the object’s atmosphere entirely and even reaching the surface.

An extended magnetic field – known as a planetary magnetosphere – is created by the shock between the stellar wind and the intrinsic magnetic field of the planet. It has the potential to be huge. Within our own Solar System, Jupiter’s magnetosphere extends to distances up to 50 times the size of the planet itself, nearly reaching Saturn’s orbit.

When the wind of high-energy particles from the star hits the planetary magnetosphere, it interacts in a bow shock that diverts the wind and compresses the magnetosphere.

Recently a team of astronomers, led by PhD student Joe Llama of the University of St. Andrews, Scotland, have worked out how we might observe planetary magnetospheres and stellar winds via their bow shocks.

Llama took a careful look at the planet HD 189733b, located 63 light years away toward the constellation Vulpecula. From the Earth, the planet is seen to transit its host star every 2.2 days, causing a dip in the overall light from the system.

As a bright star, HD 189733b has been studied extensively by astronomers.  Data collected in July 2008 by the Canada-France-Hawaii telescope mapped the star’s magnetic field. While the magnetic field varied, it was on average 30 times greater than that of our Sun – meaning that the stellar wind is much higher than the solar wind.

This allowed the team to carry out extensive simulations of the stellar wind around HD 189733b – characterizing the bow shock created as the planet’s magnetosphere passes through the stellar wind.  With this information they were able to simulate the light curves that would result from the planet and the bow shock orbiting the star.

The bow shock leads the planet – causing the light to drop a little earlier than expected.  The amount of light blocked by the bow shock, however, will change as the planet moves through a variable stellar wind. If the stellar wind is particularly strong, the resulting bow shock will be strong, and the transit depth will be greater. If the stellar wind is weak, the resulting bow shock will be weak, and the transit depth will be less.

The video below shows the light curve of a bow shock and exoplanet.

“We found that the shockwave between the stellar and planetary magnetic fields will change drastically as activity on the star varies,” Llama told Universe Today. “As the planet passes through very dense regions of the stellar wind, so the shock will become denser, the material in it will block more light and therefore cause a larger dip in the transit making it more detectable.”

While there were no transit observations for this study, this theoretical outlook demonstrates that it will be possible to detect the bow shock, and therefore the magnetic field, of a distant exoplanet. Dr. Llama comments: “This will help us to better identify potentially habitable worlds.”

The paper has been accepted for publication in Monthly Notices of  The Royal Astronomical Society and is available for download here.


The Milky Way’s Magnetic Personality


Recently we took a look at a very unusual type of map – the Faraday Sky. Now an international team of scientists, including those at the Naval Research Laboratory, have pooled their information and created one of the most high precision maps to date of the Milky Way’s magnetic fields. Like all galaxies, ours has a magnetic “personality”, but just where these fields come from and how they are created is a genuine mystery. Researchers have always simply assumed they were created by mechanical processes like those which occur in Earth’s interior and the Sun. Now a new study will give scientists an even better understanding about the structure of galactic magnetic fields as seen throughout our galaxy.

The team, led by the Max Planck Institute for Astrophysics (MPA), gathered their information and compiled it with theoretical simulations to create yet another detailed map of the magnetic sky. As NRL’s Dr. Tracy Clarke, a member of the research team explains, “The key to applying these new techniques is that this project brings together over 30 researchers with 26 different projects and more than 41,000 measurements across the sky. The resulting database is equivalent to peppering the entire sky with sources separated by an angular distance of two full moons.” This huge amount of data provides a new “all-sky” look which will enable scientists to measure the magnetic structure of the Milky Way in minute detail.

In this map of the sky, a correction for the effect of the Galactic disk has been made in order to emphasize weaker magnetic field structures. The magnetic field directions above and below the disk seem to be diametrically opposed, as indicated by the positive (red) and negative (blue) values. An analogous change of direction takes place across the vertical center line, which runs through the center of the Milky Way. (Image Credit: Max Planck Institute for Astrophysics)
Just what’s so “new” about this map? This time we’re looking at a quantity called Faraday depth – an idea dependent on a line-of-sight information set on the magnetic fields. It was created by combining more than 41,000 singular measurements which were then combined using a new image reconstruction method. In this case, all the researchers at MPA are specialists in the new discipline of information field theory. Dr. Tracy Clarke, working in NRL’s Remote Sensing Division, is part of the team of international radio astronomers who provided the radio observations for the database. It’s magnetism on a grand scale… and imparts even the smallest of magnetic features which will enable scientists to further understand the nature of galactic gas turbulence.

The concept of the Faraday effect isn’t new. Scientists have been observing and measuring these fields for the last century and a half. Just how is it done? When polarized light passes through a magnetized medium, the plane of the polarization flips… a process known as Faraday rotation. The amount of rotation shows the direction and strength of the field and thereby its properties. Polarized light is also generated from radio sources. By using different frequencies, the Faraday rotation can also be measured in this alternative way. By combining all of these unique measurements, researchers can acquire information about a single path through the Milky Way. To further enhance the “big picture”, information must be gathered from a variety of sources – a need filled by 26 different observing projects that netted a total of 41,330 individual measurements. To give you a clue of the size, that ends up being about one radio source per square degree of sky!

The uncertainty in the Faraday map. Note that the range of values is significantly smaller than in the Faraday map (Fig. 1). In the area of the celestial south pole, the measurement uncertainties are particularly high because of the low density of data points. (Image Credit: Max Planck Institute for Astrophysics)
Even with depth like this, there are still areas in the southern sky where only a few measurements have been cataloged. To fill in the gaps and give a more realistic view, researchers “have to interpolate between the existing data points that they have recorded.” However, this type of data causes some problems with accuracy. While you might think the more exact measurements would have the greatest impact on the map, scientists aren’t quite sure how reliable any single measurement could be – especially when they could be influenced by the environment around them. In this case, the most accurate measurements don’t always rank the highest in mapping points. Like Heisenberg, there’s an uncertainty associated with the process of obtaining measurements because the process is so complex. Just one small mistake could lead to a huge distortion in the map’s contents.

Thanks to an algorithm crafted by the MPA, scientists are able to face these types of difficulties with confidence as they put together the images. The algorithm, called the “extended critical filter,” employs tools from new disciplines known as information field theory – a logical and statistical method applied to fields. So far it has proven to be an effective method of weeding out errors and has even proven itself to be an asset to other scientific fields such as medicine or geography for a range of image and signal-processing applications.

Even though this new map is a great assistant for studying our own galaxy, it will help pave the way for researchers studying extragalactic magnetic fields as well. As the future provides new types of radio telescopes such as LOFAR, eVLA, ASKAP, MeerKAT and the SKA , the map will be a major resource of measurements of the Faraday effect – allowing scientists to update the image and further our understanding of the origin of galactic magnetic fields.

Original Story Source: Naval Research Laboratory News.