How Could Astronauts Call for Help from the Moon?

Exploring the Moon poses significant risks, with its extreme environment and hazardous terrain presenting numerous challenges. In the event of a major accident, assistance might take days or even weeks to arrive. To address this, Australian researchers have created a distress alert system based upon the COSPAS-SARSAT technology used for Earth-based search and rescue operations. It relies on low-power emergency beacons that astronauts could activate with minimal setup and use a planned lunar satellite network for communication and rescue coordination.

Continue reading “How Could Astronauts Call for Help from the Moon?”

NASA Focusses in on Artemis III Landing Sites.

This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the Moon in more than 50 years. The background image of the lunar South Pole terrain within the nine regions is a mosaic of LRO (Lunar Reconnaissance Orbiter) WAC (Wide Angle Camera) images. Credit: NASA
This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the Moon in more than 50 years. The background image of the lunar South Pole terrain within the nine regions is a mosaic of LRO (Lunar Reconnaissance Orbiter) WAC (Wide Angle Camera) images. Credit: NASA

It was 1969 that humans first set foot on the Moon. Back then, the Apollo mission was the focus of the attempts to land on the Moon but now, over 50 years on, it looks like we are set to head back. The Artemis project is the program that hopes to take us back to the Moon again and it’s going from strength to strength. The plan is to get humans back on the Moon by 2025 as part of Artemis III. As a prelude to this, NASA is now turning its attention to the possible landing sites. 

Continue reading “NASA Focusses in on Artemis III Landing Sites.”

NASA Wants to Move Heavy Cargo on the Moon

Illustration of logistics elements on the lunar surface. Credit: NASA

While new rockets and human missions to the Moon are in the press, NASA is quietly thinking through the nuts and bolts of a long-term presence on the Moon. They have already released two white papers about the lunar logistics they’ll require in the future and are now requesting proposals from companies to supply some serious cargo transportation. But this isn’t just for space transport; NASA is also looking for ground transportation on the Moon that can move cargo weighing as much as 2,000 to 6,000 kg (4,400 to 13,000 pounds.)

Continue reading “NASA Wants to Move Heavy Cargo on the Moon”

Building Bricks out of Lunar Regolith

Samples of the lunar bricks. /China Media Group

It was 1969 that humans first set foot on the Moon. Now, over 50 years later we are setting sights on building lunar bases. The ability to complete that goal is dependent on either transporting significant amounts of material to the Moon to construct bases or somehow utilising raw lunar materials. A team of Chinese researchers have developed a technique to create bricks from material that is very similar to the soil found on the Moon. The hope is that the lunar soil can in the future, be used to build bricks on the Moon.

Continue reading “Building Bricks out of Lunar Regolith”

Unloading Cargo on the Moon

LANDO prepares to move its payload to a safe spot on the simulated lunar surface. NASA/David C. Bowman

I don’t think it’s something I have ever really thought of! Robotic explorers can travel around the Solar System visiting our neighbouring planets but when they arrive, sometimes a scientific package must be deployed to the surface. Never occurred to me just how that’s achieved! With a number of landers scheduled to visit the Moon, NASA are testing a new robotic arm called the Lightweight Surface Manipulation System AutoNomy capabilities Development for Surface Operations or LANDO for short! It will lift payloads off the lander and pop them down gently on the surface of the Moon. 

Continue reading “Unloading Cargo on the Moon”

A New Rover Design Could Crawl Across the Moon for Decades Harvesting Water

A view of the ice-mining Lunar rover and its main components.

We have known that water ice exists on the Moon since 1998. These large deposits are found in the permanently shadowed craters around the polar region. The challenge is how to get it since shadowed craters are not the best place for solar powered vehicles to operate. A team of engineers have identified a design for an ice-mining vehicle powered by americium-241. With a half-life of 432 years, this element is an ideal power source for a vehicle to operate in the dark for several decades. 

Continue reading “A New Rover Design Could Crawl Across the Moon for Decades Harvesting Water”

Could You Find What A Lunar Crater Is Made Of By Shooting It?

Americans are famously fond of their guns. So it should come as no surprise that a team of NASA scientists has devised a way to “shoot” a modified type of sensor into the soil of an otherworldly body and determine what it is made out of. That is precisely what Sang Choi and Robert Moses from NASA’s Langley Research Center did, though their bullets are miniaturized spectrometers rather than hollow metal casings. 

Continue reading “Could You Find What A Lunar Crater Is Made Of By Shooting It?”

Studying Stars from the Lunar Surface with MoonLITE, Courtesy of NASA’s Commercial Lunar Payload Services

Diagram conveying the setup for MoonLITE on the lunar surface, beginning with a lander being delivered by NASA’s Commercial Lunar Payload Services (1), which unrolls a fiber umbilical over 100 meters (328 feet) (2), concluding with deploying the siderostat station (3). Science operations begin once instrument calibration is performed. (Credit: van Belle et al. (2024))

Optical interferometry has been a long-proven science method that involves using several separate telescopes to act as one big telescope, thus achieving more accurate data as opposed to each telescope working individually. However, the Earth’s chaotic atmosphere often makes achieving ground-based science difficult, but what if we could do it on the Moon? This is what a recent study presented at the SPIE Astronomical Telescopes + Instrumentation 2024 hopes to address as a team of researchers propose MoonLITE (Lunar InTerferometry Explorer) as part of the NASA Astrophysics Pioneers program. This also comes after this same team of researchers recently proposed the Big Fringe Telescope (BFT), which is a 2.2-kilometer interferometer telescope to be built on the Earth with the goal of observing bright stars.

Continue reading “Studying Stars from the Lunar Surface with MoonLITE, Courtesy of NASA’s Commercial Lunar Payload Services”

Europe is Sending a Drill to the Moon to Search for Water

ESA's Prospect package, including drill and a miniaturised laboratory, will fly to the Moon’s South Polar region in search of volatiles, including water ice, as part of NASA’s Commercial Lunar Payload Services initiative.

The Moon has been a source of interest of late largely due to the focus on getting humans back to the Moon. Future human explorers though will likely be there to stay in permanent lunar bases. Making this a reality means it is of vital importance to harvest materials from the Moon and water is just one of them. Recently, ESA Announced they have secured a ride to the Moon for their Prospect package in 2027. It consists of a drill and tiny laboratory that will hunt for water and other volatiles, paving the way for human exploration.

Continue reading “Europe is Sending a Drill to the Moon to Search for Water”

What Time is it on the Moon? Lunar GPS Needs to Know

We intend to explore the Moon, use its resources, and use it as a jumping-off point for missions deeper into the Solar System. For that we need a Lunar GPS. Image Credit: NASA

GPS is ubiquitous on Earth. It guides everything from precision surveying to aircraft navigation. To realize our vision of lunar exploration with a sustained human presence, we’ll need the same precision on the Moon.

That starts with an accurate clock.

Continue reading “What Time is it on the Moon? Lunar GPS Needs to Know”