Good News! Astronauts are Drinking Almost all of Their Own Urine

Just a sample of Chris Hadfield's creativity in sharing his space experience. 'Weightless water. This picture is fun no matter what direction you spin it,' he said via Twitter.

In the near future, NASA and other space agencies plan to send crews beyond Low Earth Orbit (LEO) to perform long-duration missions on the Moon and Mars. To meet this challenge, NASA is developing life support systems that will sustain crew members without the need for resupply missions from Earth. These systems must be regenerative and closed-loop in nature, meaning they will recycle consumables like food, air, and water without zero waste. Currently, crews aboard the International Space Station (ISS) rely on an Environmental Control and Life Support System (ECLSS) to meet their needs.

This system recycles air aboard the station by passing it through filters that scrub excess carbon dioxide produced by the crew’s exhalations. Meanwhile, the system uses advanced dehumidifiers to capture moisture from the crew’s exhalation and perspiration and sends this to the Water Purification Assembly (WPA). Another subsystem, called Urine Processor Assembly (UPA), recovers and distills water from astronaut urine. To boost the WPA’s efficiency, the crew integrated a new component called the Brine Processor Assembly (BPA), which recently passed an important milestone.

Continue reading “Good News! Astronauts are Drinking Almost all of Their Own Urine”

If We Can Master Artificial Photosynthesis, We Can Thrive in Space

Illustration of a photobioreactor as a means of growing building materials on Mars. Credit: Joris Wegner/ZARM/Universität Bremen

By 2030, multiple space agencies will have sent astronauts to the Moon for the first time since the Apollo Program ended over 50 years ago. These programs will create lasting infrastructure, like the Lunar Gateway, Artemis Base Camp, Moon Village, and the International Lunar Research Station (ILRS). In the ensuing decade, the first crewed missions to Mars are expected to occur, culminating with the creation of the first human outposts on another planet. Commercial ventures also want to establish habitats in Low Earth Orbit (LEO), enabling everything from asteroid mining to space tourism.

One of the biggest challenges for this renewed era of space exploration (Space Age 2.0) is ensuring that humans can remain healthy while spending extended periods in space. Foremost among them is ensuring that crews have functioning life support systems that can provide a steady supply of breathable air, which poses its own technical challenges. In a recent study, a team of researchers led by Katharina Brinkert of the University of Warwick described how artificial photosynthesis could lead to a new type of life support system that is smaller, lighter, easier, and more cost-effective to send to space.

Continue reading “If We Can Master Artificial Photosynthesis, We Can Thrive in Space”