Live Discussion: How Good is the Science of “Interstellar?”

The highly anticipated film “Interstellar” is based on science and theory; from wormholes, to the push-pull of gravity on a planet, to the way a black hole might re-adjust your concept of time. But just how much of the movie is really true to what we know about the Universe? There has also been some discussion whether the physics used for the visual effects in the movie actually was good enough to produce some science. But how much of it is just creative license?

Today, (Wed. November 26) at 19:00 UTC (3 pm EDT, 12:00 pm PDT), the Kavli foundation hosts a live discussion with three astrophysicists who will answer viewers’ questions about black holes, relativity and gravity, to separate the movie’s science facts from its science fiction.

According to the Kavli twitter feed, the Hangout will even help you understand what in the world happened at the end of the movie!

Scientists Mandeep Gill, Eric Miller and Hardip Sanghera will answer your questions in the live Google Hangout.

Submit questions ahead of and during the webcast by emailing [email protected] or by using the hashtag #KavliSciBlog on Twitter or Google+.

You can watch today’s hangout here:

Also, you can enjoy the “Interstellar” trailer:

Join the Live Discussion: The Hunt for Other Worlds Heats Up

As readers of Universe Today know, exoplanets are one of the hottest topics in astronomy today. In just the past six months, astronomers have announced the discovery of more than 700 planets orbiting other stars, bringing the total to more than 1700. These discoveries include the first Earth-size planet found in what’s called the habitable zone of a star, where liquid water could exist; the oldest known planet that could support life; and the first rocky “mega-Earth,” a planet that’s much like Earth except that it’s 17 times more massive.

On July 9, at 19:00 UTC (3 pm EDT, 12:00 pm PDT), three exoplanet hunters will come together discuss the discovery boom, consider the next steps in the hunt for habitable worlds, and debate whether we’re likely to find alien life in the next decade.

You can watch live (or watch the webcast later) below:

The panel includes MIT’s Zachory Berta-Thompson, Stanford’s Bruce Macintosh and Université de Montréal’s Marie-Eve Naud) will come together discuss the recent discovery boom, consider the next steps in the hunt for habitable worlds, and ponder the odds of finding life on another planet. The discussion will be moderated by journalist Kelen Tuttle.

To submit questions ahead of time or during the webcast, send an email to [email protected] or post on Twitter with hashtag #KavliLive. You can find additional information about the webcast and the Kavli Foundation here.

Webcast: “Stellar Explosions and Death Dances”

When stars die, their final gasps can trigger the most powerful blasts of energy in the universe. Their demise can also lead to a bizarre death dance as the voracious corpse of a dead star begins consuming a nearby companion.

Today (Feb. 5) you can watch a live webcast (or watch the replay later) to learn about the recent detection of a dying star igniting the most powerful blast ever seen – something so powerful it radiated energy that was nearly 50 billion times that of visible light. Also learn how scientists have discovered that a familiar sight in the skies is actually our earliest view yet of a star being consumed by the remnant of a nearby exploded star.

The webcast starts at 19:00 UTC (3 pm EDT, Noon PDT). You can watch below. To submit questions ahead of time or during the webcast, send an email to [email protected] or post on Twitter with hashtag #KavliLive. You can find additional information from the Kavli Foundation here.

Watch Live Webcast: Witnessing Starbursts in the Early Universe

Recently, a multinational team of astronomers found that massive, “dusty” galaxies were churning out stars much earlier than previously believed – as early as one billion years after the Big Bang (read our article about the discovery here).

Today, March 29, 2013 at 19:00 UTC (12:00 p.m. PDT, 3:00 pm EDT) the Kavli Foundation is hosting a live Google+ Hangout: “Witnessing Starbursts in the Early Universe.” You’ll have the chance to ask your questions about starburst galaxies, the early Universe and the incredible research being conducted by the South Pole Telescope and the Atacama Large Millimeter/submillimeter Array(ALMA) in Chile. Watch live in the window below, or see the replay later if you miss it live.

Science writer Bruce Lieberman will moderate, and three members of the research team will participate:

John E. Carlstrom – Leader of the 10-meter South Pole Telescope project and Deputy Director of the University of Chicago’s Kavli Institute for Cosmological Physics.
Dan P. Marrone – Assistant Professor in the Department of Astronomy at the University of Arizona.
Joaquin D. Vieira – Leader of the multinational team studying the galaxies discovered by the South Pole Telescope, Postdoctoral Scholar at the California Institute of Technology and member of Caltech’s Observational Cosmology Group.

Submit your questions before or during the webcast via Twitter (hashtag #KavliAstro) or by email to [email protected]

The webcast will also be available at: http://www.kavlifoundation.org/science-spotlights/spotlight-live-starbursts-and-early-universe

Cosmic Rays and Exploding Stars

Cosmic Rays

Scientists have know about cosmic rays for a century. But these high-energy subatomic particles, which stream through space at nearly the speed of light and crash into the Earth’s upper atmosphere, have been mostly a mystery. The primary reason: researchers have been unable to tell where they come from, or how they’re born. But new research has shed new light on the origins of cosmic rays: supernovae. (Read our article about this discovery).

Today, Thursday, Feb. 28,at 20:00-20:30 UTC (12:00-12:30 p.m. PST, 3:00 pm EST) Dr. Stefan Funk of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) will answer questions from the web. He led the research team that was able to track gamma rays — the most energetic form of electromagnetic radiation, or light — back to the remnants of supernova explosions, using the Fermi Gamma Ray Telescope. The finding offers the first astrophysical evidence for how cosmic rays are produced, as well as where they are generated: in the shock waves that emanate from an exploded star.
Continue reading “Cosmic Rays and Exploding Stars”

Worlds Without Suns: Nomad Planets Could Number In The Quadrillions

[/caption]

The concept of nomad planets has been featured before here on Universe Today, and for good reason. Not only is the idea of mysterious lone planets drifting sunless through interstellar space an intriguing one, but also the sheer potential quantity of such worlds is simply staggering. If some very well-respected scientists’ calculations are correct there are more nomad planets in our Milky Way galaxy than there are stars — a lot more. With estimates up to 100,000 nomad planets for every star in the galaxy, there could be literally quadrillions of wandering worlds out there, ranging in size from Pluto-sized to even larger than Jupiter.

That’s a lot of nomads. But where did they all come from?

Recently, The Kavli Foundation had a discussion with several scientists involved in nomad planet research. Roger D. Blandford, Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University, Dimitar D. Sasselov, Professor of Astronomy at Harvard University and Louis E. Strigari, Research Associate at KIPAC and the SLAC National Accelerator Laboratory talked about their findings and what sort of worlds these nomad planets might be, as well as how they may have formed.

One potential source for nomad planets is forceful ejection from solar systems.

“Most stars form in clusters, and around many stars there are protoplanetary disks of gas and dust in which planets form and then potentially get ejected in various ways,” said Strigari. “If these early-forming solar systems have a large number of planets down to the mass of Pluto, you can imagine that exchanges could be frequent.”

And the possibility of planetary formation outside of stellar disks is not entirely ruled out by the researchers — although they do impose a lower limit to the size of such worlds.

“Theoretical calculations say that probably the lowest-mass nomad planet that can form by that process is something around the mass of Jupiter,” said Strigari. “So we don’t expect that planets smaller than that are going to form independent of a developing solar system.”

“This is the big mystery that surrounds this new paper. How do these smaller nomad planets form?” Sasselov added.

Of course, without a sun of their own to supply heat and energy one might assume such worlds would be cold and inhospitable to life. But, as the researchers point out, that may not always be the case. A nomad planet’s internal heat could supply the necessary energy to fuel the emergence of life… or at least keep it going.

“If you imagine the Earth as it is today becoming a nomad planet… life on Earth is not going to cease,” said Sasselov. “That we know. It’s not even speculation at this point. …scientists already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth.”

Researcher Roger Blandford also suggested that “small nomad planets could retain very dense, high-pressure ‘blankets’ around them. These could conceivably include molecular hydrogen atmospheres or possibly surface ice that would trap a lot of heat. They might be able to keep water liquid, which would be conducive to creating or sustaining life.”

And so with all these potentially life-sustaining planets knocking about the galaxy,  is it possible that they could have helped transport organisms from one solar system to another? It’s a concept called panspermia, and it’s been around since at least the 5th century BCE when the Greek philosopher Anaxagoras first wrote about it. (We’ve written about it too, as recently as three weeks ago, and it’s still a much-debated topic.)

“In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Blandford. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle.

There could be quadrillions of nomad planets in our galaxy alone -- and they could even be ejected into intergalactic space. (Image: ESO/S.Brunier)

“And so it’s a very old speculation, but it’s a perfectly reasonable idea and one that is becoming more accessible to scientific investigation.”

Nomad planets may not even be limited to the confines of the Milky Way. Given enough of a push, they could be sent out of the galaxy entirely.

“Just a stellar or black hole encounter within the galaxy can, in principle, give a planet the escape velocity it needs to be ejected from the galaxy. If you look at galaxies at large, collisions between them leads a lot of material being cast out into intergalactic space,” Blandford said.

The discussion is a fascinating one and can be found in its entirety on The Kavli Foundation’s site here, and watch a recorded interview between Louis Strigari and journalist Bruce Lieberman here.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.