Another Beautiful Image of Jupiter from Juno During a Flyby. Great Work by Gerald Eichstadt and Sean Doran

A multitude of swirling clouds in Jupiter's dynamic North North Temperate Belt is captured in this image from NASA's Juno spacecraft. Appearing in the scene are several bright-white “pop-up” clouds as well as an anticyclonic storm, known as a white oval. This color-enhanced image was taken at 4:58 p.m. EDT on Oct. 29, 2018, as the spacecraft performed its 16th close flyby of Jupiter. At the time, Juno was about 4,400 miles from the planet's cloud tops, at a latitude of approximately 40 degrees north. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. Image Credit: Enhanced image by Gerald Eichstädt and Sean Doran (CC BY-NC-SA) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS

Confucius said, “Everything has beauty, but not everyone sees it.”  

When it comes to Jupiter, Gerald Eichstädt and Seán Doran can certainly see it. And lucky for us, they have the skill to bring that beauty to the fore for the rest of us to enjoy.

Continue reading “Another Beautiful Image of Jupiter from Juno During a Flyby. Great Work by Gerald Eichstadt and Sean Doran”

Clouds On Jupiter Rising Up Above the Surrounding Atmosphere

At center right, a patch of bright, high-altitude "pop-up" clouds rises above Jupiter's surrounding atmosphere. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt

Though it looks like it to us, Jupiter’s clouds do no form a flat surface. Some of its clouds rise up above the surrounding cloud tops. The two bright spots in the right center of this image are much higher than the surrounding clouds.

Continue reading “Clouds On Jupiter Rising Up Above the Surrounding Atmosphere”

Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.

Io casts a crisp circular shadow on the the cloud tops in Jupiter's atmosphere in this JunoCam image processed by Kevin Gill. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill https://creativecommons.org/licenses/by/2.0/

The JunoCam onboard NASA’s Juno spacecraft continues to provide we Earthbound humans with a steady stream of stunning images of Jupiter. We can’t get enough of the gas giant’s hypnotic, other-worldly beauty. This image of Io passing over Jupiter is the latest one to awaken our sense of wonder.

This image was processed by Kevin Gill, a NASA software engineer who has produced other stunning images of Jupiter.

Continue reading “Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.”

The Latest Insanely Beautiful Image of Jupiter Captured by Juno

This stunning image comes from the Juno spacecraft. Citizen scientist Kevin M. Gill created it using images from Juno's JunoCam imager. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

There’s something about Jupiter that mesmerizes those who gaze at it. It’s intricate, dazzling clouds are a visual representation of the laws of nature that’s hard to turn away from. And even though the Juno spacecraft has been at Jupiter for almost three years now, and has delivered thousands of images of the gas giant’s colourful, churning clouds, we can’t seem to satisfy our appetite.

Continue reading “The Latest Insanely Beautiful Image of Jupiter Captured by Juno”

Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?

Though Jupiter and Earth are wildly differing places, some things are the same on both worlds. Image Credit: NASA
Though Jupiter and Earth are wildly differing places, some things are the same on both worlds. Image Credit: NASA

Jupiter: a massive, lifeless gas giant out there on the other side of the asteroid belt. It’s a behemoth, containing 2.5 times as much mass as all the other planets combined. To top it off, it’s named after the Roman God of War.

Earth: a tiny rocky world, almost too close to the Sun, where life rises and falls, punctuated repeatedly by extinctions. Compared to Jupiter, it’s a gum-drop world: Jupiter is 317.8 times the mass of Earth. And Earth is named after a goddess in German paganism, or so we think.

“Out of all the complexity flows beauty…”

Norman Kuring, NASA’s Goddard Space Flight Center.

Continue reading “Jupiter or Earth? Which One’s Which, and Why Do They Look so Similar?”

JunoCam Wows Us Again With Detailed Images of the Great Red Spot

JunoCam captured these images of the Great Red Spot during the July 2017 fly-by of Jupiter. The composite images provide a richly-detailed look at the storm. Image: Sánchez-Lavega et al. 2018; composed by G. Eichstadt and J. Cowart
JunoCam captured these images of the Great Red Spot during the July 2017 fly-by of Jupiter. The composite images provide a richly-detailed look at the storm. Image: Sánchez-Lavega et al. 2018; composed by G. Eichstadt and J. Cowart

For almost 200 years humans have been watching the Great Red Spot (GRS) on Jupiter and wondering what’s behind it. Thanks to NASA’s Juno mission, we’ve been getting better and better looks at it. New images from JunoCam reveal some of the deeper detail in our Solar System’s longest-lived storm.

Continue reading “JunoCam Wows Us Again With Detailed Images of the Great Red Spot”

Another Juno Flyby, Another Amazing Sequence of Images of Jupiter

Atmospheric features in Jupiter’s northern hemisphere, captured by color-enhanced images from NASA’s Juno spacecraft. Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstäd/Seán Doran

In July of 2016, the Juno spacecraft established orbit around Jupiter, becoming the first spacecraft since the Galileo probe to study the planet directly. Since that time, the probe has been sending back vital information about Jupiter’s atmosphere, magnetic field and weather patterns. With every passing orbit – known as perijoves, which take place every 53 days – the probe has revealed more exciting things about this gas giant.
Continue reading “Another Juno Flyby, Another Amazing Sequence of Images of Jupiter”

Here They are! New Juno Pictures of the Great Red Spot

Jupiter's Great Red Spot, as imaged by the Juno spacecraft's JunoCam at a distance of just 9,000 km (5,600 mi) from the atmosphere. Credit : NASA/SwRI/MSSS/TSmith

Earlier this week, on Monday, July 10th, the Juno mission accomplished an historic feet as it passed directly over Jupiter’s most famous feature – the Great Red Spot. This massive anticyclonic storm has been raging for centuries, and Juno’s scheduled flyby was the closest any mission has ever come to it. It all took place at 7:06 p.m. PDT (11:06 p.m. EDT), just days after the probe celebrated its first year of orbiting the planet.

And today – Wednesday, July 12th, a few days ahead of schedule – NASA began releasing the pics that Juno snapped with its imager – the JunoCam – to the public. As part of the missions’ seventh orbit around the planet (perijove 7) these images are the closest and most detailed look of Jupiter’s Great Red Spot to date. And as you can clearly see by going to the JunoCam website, the pictures are a sight to behold!

And as always, citizen scientists and amateur astronomers are already busy processing the images. This level of public involvement in a NASA mission is something quite new. Prior to every perijove, NASA has asked for public input on what features they would like to see imaged. These Points of Interest (POIs), as they are called, are then photographed, and the public has had the option of helping to process them for public consumption.

“Great Red Spot from P7 Flyover”. Credit: NASA/SwRI/MSSS/Jason Major © public domain

As Scott Bolton – the associate VP at the Southwest Research Institute (SwRI) and the Principle Investigator (PI) of the Juno mission – said in a NASA press release, “For generations people from all over the world and all walks of life have marveled over the Great Red Spot. Now we are finally going to see what this storm looks like up close and personal.” And in just the past two days, several processed images have already come in.

Consider the images that were processed by Jason Major – an amateur astronomer and graphic designer who created the astronomy website Lights in the Dark. In the image above (his own work), we see a cropped version of the original JunoCam image in order to put Jupiter’s Great Red Spot center-frame. It was then color-adjusted and enhanced to mark the boundaries of the storm’s “eye” and the swirling clouds that surround it more clearly.

On his website, Major described the method he used to bring this image to life:

“[T]he image above is my first rendering made from a map-projected PNG file which centers and fully-frames the giant storm in contrast- and color-enhanced detail… The resolution is low but this is what my “high-speed” workflow is set up for—higher resolution images will take more time and I’m anticipating some incredible versions to be created and posted later today and certainly by tomorrow and Friday by some of the processing superstars in the imaging community (Kevin, Seán, Björn, Gerald, I’m looking at you!)”

Wide-frame shot of the Great Red Spot, processed to show contrast between the storm and Jupiter’s clouds. Credit: NASA/SwRI/MSSS/Jason Major © public domain

Above is another one of Major’s processed images, which was released shortly after the first one. This image shows the GRS in a larger context, using the full JunoCam image, and similarly processed to show contrasts. The same image was processed and submitted to the Juno website by amateur astronomers Amadeo Bellotti and Oliver Jenkins – though their submissions are admittedly less clear and colorful than Major’s work.

Other images include “Juno Eye“, a close up of Jupiter’s northern hemisphere that was processed by our good friend, Kevin M. Gill. Shown below, this image is a slight departure from the others (which focused intently on Jupiter’s Great Red Spot) to capture a close-up of the swirls in Jupiter’s northern polar atmosphere. Much like the GRS, these swirls are eddies that are created by Jupiter’s extremely high winds.

The Juno mission reached perijove – i.e. the point in its orbit where it is closest to Jupiter’s center – on July 10th at 6:55 p.m. PDT (9:55 p.m. EDT). At this time, it was about 3,500 km (2,200 mi) above Jupiter’s cloud tops. Eleven minutes and 33 seconds later, it was passing directly over the anticyclonic storm at a distance of about 9,000 km (5,600 mi); at which time, all eight of its instruments were trained on the feature.

In addition to the stunning array of images Juno has sent back, its suite of scientific instruments have gathered volumes of data on this gas giant. In fact, the early science results from the mission have shown just how turbulent and violent Jupiter’s atmosphere is, and revealed things about its complex interior structure, polar aurorae, its gravity and its magnetic field.

“Juno Eye”. Credit : NASA/JPL-Caltech/MSSS/SwRI/©Kevin M. Gill

The Juno mission reached Jupiter on July 5th, 2016, becoming the second probe in history to establish orbit around the planet. By the time the mission is scheduled to end in 2018 (barring any mission extensions), scientist hope to have learned a great deal about the planet’s structure and history of formation.

Given that this knowledge is likely to reveal things about the early history and formation of the Solar System, the payoffs from this mission are sure to be felt for many years to come after it is decommissioned.

In the meantime, you can check out all the processed images by going to the JunoCam sight, which is being regularly updated with new photos from Perijove 7!

Further Reading: NASA, JunoCam, Lights in the Dark

Best Jupiter Images From Juno … So Far

Jupiter as seen by the Juno spacecraft during the Perijove 5 pass on March 27, 2017. Processed using raw data. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

The original plans for the Juno mission to Jupiter didn’t include a color camera. You don’t need color images when the mission’s main goals are to map Jupiter’s magnetic and gravity fields, determine the planet’s internal composition, and explore the magnetosphere.

But a camera was added to the manifest, and the incredible images from the JunoCam have been grabbing the spotlight.

As an instrument where students and the public can choose the targets, JunoCam is a “public outreach” camera, meant to educate and captivate everyday people.

“The whole endeavor of JunoCam was to get the public to participate in a meaningful way,” said Candy Hansen, Juno co-investigator at the Planetary Science Institute in Tucson, Arizona, speaking at a press conference last week to showcase Juno’s science and images.

And participate they have. Hundreds of ‘amateur’ image processing enthusiasts have been processing raw data from the JunoCam, turning them into stunning images, many reminiscent of a swirling Van Gogh ‘starry night’ or a cloudscape by Monet.

The swirling cloudtops of Jupiter, as seen by Juno during Perijove 5 on March 27, 2017. Credit: NASA/JPL-Caltech/SwRI/MSSS/Sophia Nasr.

“The contributions of the amateurs are essential,” Hansen said. “I cannot overstate how important the contributions are. We don’t have a way to plan our data without the contributions of the amateur astronomers. We don’t have a big image processing team, so we are completely relying on the help of our citizen scientists.”

Jupiter as seen by Juno during Perijove 6 in May, 2017. Credit: NASA/SwRI/MSSS/Gerald Eichstädt / Seán Doran.

Click on this image to have access to a 125 Megapixel upscaled print portrait.

Featured here are images processed by Seán Doran, Sophia Nasr, Kevin Gill and Jason Major. Like hundreds of others around the world, they anxiously await for data to arrive to Earth, where it is uploaded to the public Juno website. Then they set to work to turn the data into images.

“What I find the most phenomenal of all is that this takes real work,” Hansen said. “When you download a JunoCam image and process it, it’s not something you do in five minutes. The pictures that we get that people upload back onto our site, they’ve invested hours and hours of their own time, and then generously returned that to us.”

This video shows Juno’s trajectory from Perijove 6, and is based on work by Gerald Eichstädt, compiled and edited by Seán Doran. “This is real imagery projected along orbit trajectory,” Doran explained on Twitter.

Many of the images are shared on social media, but you can see the entire gallery of processed JunoCam images here. The Planetary Society also has a wonderful gallery of images processed by people around the world.

Intricate swirls on Jupiter Jupiter, from Juno’s Perijove 6 pass on May 19, 2017. Credit:
NASA/JPL-Caltech/SwRI /MSSS/Kevin M. Gill.

Details of Jupiter’s swirling gas clouds, as seen by Juno during the Perijove 6 pass in May, 2017. Credit:
NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran.

JunoCam was built by Malin Space Science Systems, which has cameras on previous missions like the Curiosity Mars Rover, the Mars Global Surveyor and the Mars Color Imager on the Mars Reconnaissance Orbiter. To withstand the harsh radiation environment at Jupiter, the camera required special protection and a reinforced lens.

Whenever new images arrive, many of us feel exactly like editing enthusiast Björn Jónsson:

Even the science team has expressed their amazement at these images.

“Jupiter looks different than what we expected,” said Scott Bolton, Juno’s principal investigator at the Southwest Research Institute. “Jupiter from the poles doesn’t look anything like it does from the equator. And the fact the north and south pole don’t look like each other, makes us wonder if the storms are stable, if they going to stay that way for years and years like the the Great Red Spot. Only time will tell us what is true.”

Read our article about the science findings from Juno.

A sequence of images of Jupiter from Juno’s Perijove 6 pass during May, 2017. Credit:
NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran.

Part of what makes these images so stunning is that Juno is closer to Jupiter than any previous spacecraft.

“Juno has an elliptical orbit that brings it between the inner edges of Jupiter’s radiation belt and the planet, passing only 5,000 km above the cloud tops,” Juno Project Manager Rick Nybakken told me in my book ‘Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos.’ “This close proximity to Jupiter is unprecedented, as no other mission has conducted their science mission this close to the planet. We’re right on top of Jupiter, so to speak.”

Juno engineers designed the mission to enable the use of solar panels, which prior to Juno, have never been used on a spacecraft going so far from the Sun. Juno orbits Jupiter in a way that the solar panels are always pointed towards the Sun and the spacecraft never goes behind the planet. Juno’s orbital design not only enabled an historic solar-powered mission, it also established Juno’s unique science orbit.

White oval on Jupiter during Juno’s Perijove 4 pass on February 2, 2017. Processed from raw data. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

Uncalibrated, processed raw image from Juno’s Perijove 6 pass of Jupiter on May 19, 2017. Credit: NASA/SwRI/MSSS/Jason Major.

Juno spacecraft launched from Cape Canaveral on August 5, 2011. After traveling five years and 1.7 billion miles Juno arrived in orbit at Jupiter on July 4, 2016. The mission will last until at least February 2018, making 11 science orbits around Jupiter, instead of the 32 laps originally planned. Last year, engineers detected a problem with check valves in the propulsion system, and NASA decided to forego an engine burn to move Juno into a tighter 14-day orbit around Jupiter. The current 53.4 day orbit will be maintained, but depending on how the spacecraft responds, NASA could extend the mission another three years to give Juno more flybys near Jupiter.

The next science flyby will occur on July 11, when Juno will get some close-up views of the famous Great Red Spot.

Thanks to everyone who works on these images.

Animation of six images acquired by NASA’s Juno spacecraft on March 27, 2017. Credit: NASA/JPL-Caltech/SwRI/MSSS/Jason Major.

This enhanced color view of Jupiter’s south pole was created by citizen scientist Gabriel Fiset using data from the JunoCam instrument on NASA’s Juno spacecraft. Oval storms dot the cloudscape. Approaching the pole, the organized turbulence of Jupiter’s belts and zones transitions into clusters of unorganized filamentary structures, streams of air that resemble giant tangled strings. The image was taken on Dec. 11, 2016 at 9:44 a.m. PST (12:44 p.m. EST), from an altitude of about 32,400 miles (52,200 kilometers) above the planet’s beautiful cloud tops. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset

Juno Sees Overlapping Colliding Clouds on Jupiter

Image taken by the JunoCam imager on NASA’s Juno spacecraft, highlighting a feature on Jupiter where multiple atmospheric conditions appear to collide. Credit: NASA/SwRI/MSSS

The Juno mission has made some remarkable finds since it reached Jupiter in July of 2016. During the many orbits it has made around Jupiter’s poles – which occur every 53 days – some stunning imagery has resulted. Not only have these pictures revealed things about Jupiter’s atmosphere, they have also been an opportunity for the public to participate in the exploration of this giant planet.

The latest feature that was publicly selected to be photographed is known as “STB Spectre“. This feature  was photographed on March 27th, 2017, at 2:06 a.m. PDT (5:06 a.m. EDT), when Juno was 12,700 km from the planet. During this pass, the JunoCam captured a series of light and dark clouds coming together in Jupiter’s South Tropical Region (STR).

The left side of the photograph corresponds to the South Temperate Belt (STB), a prominent belt in Jupiter’s Southern Hemisphere which is typically darker. It is here that “the Spectre” – the wide bluish streaks on the upper right side of the photograph – can be seen, and which represent a long-lived storm that was taking place when the area was photographed.

Unprocessed JunoCam image showing the points of interest (POIs) known as “STB Spectre” and “The White Solid”. Credit: NASA/SwRI/MSSS

On the right side of the image, we see the neighboring Southern Tropical Zone (STropZ), one of the most prominent zones on the planet. Here, we see another atmospheric condition colliding with the Spectre, one which is characterized by a series of anticyclonic storms (the small white ovals). Not surprisingly, it is within these two bands that part of the large anticyclonic storms known as the “Great Red Spot” and “Red Spot Junior” also exist.

Like all images snapped by the JunoCam since the probe began orbiting Jupiter, this image was made available to the public. In this case, the image was processed by Roman Tkachenko, an amateur astronomer, image processor, and 3D artist who’s body of work includes images and visualizations for the New Horizons mission. The description was produced by John Rogers, the citizen scientist who identified the point of interest.

As Tkachenko Universe Today via email, working with these missions pictures is all about bringing raw images to life:

“This image is based on a raw image. Working with raw data you can get a higher resolution than we can see in already constructed, and map-projected official versions. I worked with colors, sharpness and dynamic range to show more details and variety.”

This is something new for a space mission, where the public has a direct say in what features will be photographed for study, and can help process them as well.The participation of amateur astronomers and citizen scientists in this mission is an opportunity to be involved in something gorgeous,” said Tkachenko. “They can also show their skills to the public and help the Juno team look at all these data from different angles.

JunoCam closeups of the STB Spectre, with adjacent image showing the SSTB (‘string of pearls’). Credit: NASA/SwRI/MSSS

The STB Spectre was one of five Points of Interest (POIs) that were selected by the public to be photographed during Perijove 5 – Juno’s fifth orbit of the planet, which began on March 27th, 2017. Before the next maneuver (Perijove 6) commences on May 19th, 2017, the public will once again be able to vote on what features they want to see photographed.

Things that have been captured during previous orbits include the stunning image of the “Jovian pearl“, a detailed view of Jupiter’s northern clouds, breathtaking images of the swirling clouds round Jupiter’s northern and southern poles. Many more are sure to follow between now and July 2018, as Juno conducts its seven remaining perijove maneuvers before being de-orbited and burning up in Jupiter’s atmosphere.

To learn more about the rules for voting, and to vote on what you’d like the JunoCam to capture, check out the Southwest Research Institute’s (SwRI) JunoCam voting page. And be sure to enjoy this mission video:

Further Reading: NASA