Weekly Space Hangout: March 14, 2018: Ethan Good, Visiting Vehicles Officer at JSC

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guests:
In his current position as Visiting Vehicles Officer in Mission Control at JSC, Ethan Good supports cargo and (eventually) commercial crew flights to/from the International Space Station. Previously, Ethan completed three summer-winter contracts as a Research Scientist at Amundsen-Scott South Pole Station, as well as served as commander of a four-person crew during a two-week HERA study in 2015.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

Weekly Space Hangout – Jan 31, 2018: Andrzej Stewart of the Hi-SEAS IV Mars Simulation Mission

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guest:
Andrzej Stewart currently works in Mission Control at the Johnson Space Center in Houston, Texas. However, from 2015-2016, Andrzej acted as the Chief Engineering Officer during the year-long Hawaii Space Exploration Analog and Simulation (Hi-SEAS) IV Mars simulation mission on Mauna Loa. Prior to that he participated in NASA’s Human Exploration Research Analog (HERA) simulation where he acted as the flight engineer.

Aside from his mission-simulation participation, Andrzej has extensive design and engineering experience within the space program having worked on projects such as Spitzer, NASA’s Deep Space Network, and the Orion spacecraft.

You can read about Andrzej’s time “”on Mars”” and learn more about him by visiting his blog, Surfing with the Aliens.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

James Webb Wraps up 3 Months in the Freezer. It’s Ready for Space

When the James Webb Space Telescope finally takes to space, it will study some of the most distant objects in the Universe, effectively looking back in time to see the earliest light of the cosmos. It will also study extra-solar planets around nearby stars and even bodies within the Solar System. In this respect, the JWST is the natural successor to Hubble and other pioneering space telescopes.

It is therefore understandable why the world is so eager for the JWST to be launched into space (which is now scheduled to take place in 2019). And recently, the telescope passed another major milestone along the road towards deployment. After spending three months in a chamber designed to simulate the temperatures and vacuum conditions of space, the JWST emerged and was given a clean bill of health.

The tests took place inside Chamber A, a thermal vacuum testing facility located at the Johnson Space Center in Houston, Texas. This chamber was built back in 1965 as part of NASA’s race to the Moon, where it conducted tests to ensure that the Apollo command and service modules were space-worthy. Beginning in mid-July, the telescope was put into the chamber and subjected to temperatures ranging from 20 to 40 K (-253 to -233 °C; 423 to 387 °F).

NASA’s James Webb Space Telescope sits in Chamber A at NASA’s Johnson Space Center in Houston awaiting the colossal door to close in July 2017 for cryogenic testing. Credits: NASA/Chris Gunn

Once the temperature and vacuum conditions were just right, a team of NASA engineers began testing the alignment of the JWST’s 18 primary mirror segments to make sure they would act as a single, 6.5-meter telescope. As Bill Ochs – the James Webb telescope project manager at NASA’s Goddard Space Flight Center – indicated to ArsTechnica, this latest test has shown that the telescope is indeed space-worthy.

“We now have verified that NASA and its partners have an outstanding telescope and set of science instruments,” he said. “We are marching toward launch.”

The team of engineers also tested the JWST’s guidance and optical systems by simulating the light of a distant star. Not only was the telescope able to detect the light, its optical systems were able to process it. The telescope was also able to track the simulated star’s movement, which demonstrated that the JWST will be able to acquire and hold research targets once it is in space.

Many tests are still needed before the JWST can take to space next year. These will be conducted at Northrop Grumman’s company headquarters in Los Angeles, where the telescope will be transported after leaving the Johnson Space Center in late January or early February. Once there, the optical instrument will mated to the spacecraft and sunshield to complete the construction of the telescope.

The sunshield test unit on NASA’s James Webb Space Telescope is unfurled for the first time. Credit: NASA

These tests are necessary since NASA will be hard-pressed to service the telescope once it is in space. This is due to the fact that it will be operating at the Earth-Sun L2 Lagrange Point (which will place farther away from Earth than the Moon) for a minimum of five years. At this distance, any servicing missions will be incredibly difficult, time-consuming and expensive to mount.

However, once the JWST has passed its entire battery of tests and NASA is satisfied it is ready to take to space, it will be shipped off to the Guiana Space Center in Kourou, French Guiana. Once there, it will launch aboard a European Space Agency (ESA) Ariane V booster. Originally, this was scheduled to take place in October of 2017, but is now expected to take place no earlier than Spring of 2018.

When the James Webb Space Telescope is operational, it is expected to reveal some truly amazing things about our Universe. In addition to looking farther into space than any previous telescope (and further back in time), its other research goals include studying nearby exoplanets in unprecedented detail, circumstellar debris disks, supermassive black holes at the centers of galaxies, and even searching for life in the Solar System by examining Jupiter’s moons.

For this reason, NASA can be forgiven for pushing the launch back to make sure everything is in working order. But of course, we can be forgiven for wanting to see it launched as soon as possible! There are mysteries out there that are just waiting to be revealed, and some amazing scientific finds that need to be followed up on.

In the meantime, be sure to check out this video about the JWST, courtesy of NASA:

Further Reading: ArsTechnica, NASA

Sunshield Layers Installed on NASA’s James Webb Space Telescope as Mirror Cryo Cooling Testing Commences

All 5 layers of the Webb telescope sunshield installed at Northrop Grumman’s clean room in Redondo Beach, California. The five sunshield membrane layers are each as thin as a human hair. Credits: Northrop Grumman Corp.

The complex multilayered sunshield that will protect the delicate optics and state of the art infrared science instruments of NASA’s James Webb Space Telescope (JWST) is now fully installed on the spacecraft bus in California, completing another major milestone on the path to launch, NASA announced.

Meanwhile a critical cryogenic cooling test of Webb’s mirrors and science instrument bus has commenced inside a giant chamber at NASA’s Johnson Space Center in Texas, marking another major milestone as the mammoth telescope comes together after years of development.

NASA’s $8.8 Billion James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).

The sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit. Each successive layer of the sunshield, which is made of Kapton, is cooler than the one below. The sunshield is in the clean room at Northrop Grumman Aerospace Systems in Redondo Beach, California.
Credits: Northrop Grumman Corp.

The Webb telescopes groundbreaking tennis court sized sunshield subsystem consists of five layers of kapton that will keep the optics and instruments incredibly cool, by reducing the incoming sunside facing temperature more than 570 degrees Fahrenheit. Each layer is as thin as a human hair.

“The sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit,” according to NASA. “Each successive layer of the sunshield is cooler than the one below.”

The painstaking work to integrate the five sunshield membranes was carried out in June and July by engineers and technicians working at the Northrop Grumman Corporation facility in Redondo Beach, California.

“All five sunshield membranes have been installed and will be folded over the next few weeks,” said Paul Geithner, deputy project manager – technical for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

Deployment tests of the folded sunshield start in August.

Webb’s four research instruments cannot function without the essential cooling provided by the sunshield deployment.

Northrop Grumman designed the Webb telescope’s optics and spacecraft bus for NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages Webb.

Two sides of the James Webb Space Telescope (JWST). Credit: NASA

“This is a huge milestone for the Webb telescope as we prepare for launch,” said Jim Flynn, Webb sunshield manager, Northrop Grumman Aerospace Systems.

“The groundbreaking tennis court sized sunshield will shield the optics from heat and assist in providing the imaging of the formation of stars and galaxies more than 13.5 billion years ago.”

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

After successfully passing a rigorous series of vibration and acoustic environmental tests earlier this year at NASA Goddard in March, the mirror and instrument assembly was shipped to NASA Johnson in May for the cryo cooling tests.

“Those tests ensured Webb can withstand the vibration and noise created during the telescope’s launch into space. Currently, engineers are analyzing this data to prepare for a final round of vibration and acoustic testing, once Webb is joined with the spacecraft bus and sunshield next year,” says NASA.

The cryogenic cooling test will last 100 days and is being carried out inside the giant thermal vacuum known as Chamber A at the Johnson Space Center in Houston.

NASA’s James Webb Space Telescope sits in Chamber A at NASA’s Johnson Space Center in Houston awaiting the colossal door to close in July 2017 for cryogenic testing. Credits: NASA/Chris Gunn

“A combination of liquid nitrogen and cold gaseous helium will be used to cool the telescope and science instruments to their operational temperature during high-vacuum operations,” said Mark Voyton, manager of testing effort, who works at the NASA Goddard Space Flight Center in Greenbelt, Maryland.

Next year, the tennis-court sized sunshield and spacecraft bus will be combined to make up the entire observatory.

The first layer of the Webb telescope sunshield installed at Northrop Grumman’s clean room in Redondo Beach, California. Credits: Northrop Grumman Corp.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Assembly of the Webb telescope is currently on target and slated to launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in October 2018.

NASA and ESA are currently evaluating a potential launch scheduling conflict with ESA’s BepiColombo mission to Mercury.

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

………….

Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 11-14: “SpaceX CRS-12 and CRS-11 resupply launches to the ISS, Inmarsat 5, BulgariaSat 1 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Two Veteran NASA Astronauts Michael Foale and Ellen Ochoa Inducted into U.S. Astronaut Hall of Fame at KSC

Two veteran retired NASA astronauts – Michael Foale and Ellen Ochoa – were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 during induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – In a moving ceremony, a pair of veteran NASA astronauts – Michael Foale and Ellen Ochoa – who once flew together on a space shuttle mission, were inducted into the U. S. Astronaut Hall of Fame at the Kennedy Space Center Visitor Complex, Florida, on May 19.

Between them, Foale and Ochoa flew to space a combined total of ten times – 6 for Foale and 4 for Ochoa.

They flew together as crewmates on the STS-56 space shuttle mission aboard Space Shuttle Discovery which launched from the Kennedy Space Center, Florida, on 8 April 1993.

The nine day STS-56 mission was Ochoa’s rookie flight and Foale’s second flight. It was the second of the shuttle’s ATLAS series of Earth science missions – dubbed Atlas-2 – whose purpose was to study the atmosphere and solar interactions.

“I was so happy to hear he and I were going to be inducted together,” Ochoa said during her acceptance speech. “He’d already had one mission and he passed along all kinds of helpful information that helped a rookie like me know where to focus and hopefully not be too surprised when the flight happened. Because being surprised in space is really not a good thing, as Mike found out.”

Ellen Ochoa counts as the first Hispanic woman to travel to space and currently serves as the 11th director of NASA’s Johnson Space Center in Houston.

Michael Foale counts as the only U.S. astronaut to serve on both the International Space Station (ISS) and Russian space station Mir.

Foale was on board Mir in June 1997 during one of the worst disasters in space when an out of control unmanned Russian Progress cargo ship collided with the station’s Spektr module causing its air depressurization and sent Mir tumbling and rolling. He and his two Russian crewmates rapidly went into action to seal the leak, to stabilize and save Mir and themselves. He spent four months on Mir during the Mir 23 and Mir 24 missions.

The induction ceremony was held in a truly magnificent setting below NASA’s retired Space Shuttle Atlantis orbiter now on permanent display in a dedicated pavilion at the Kennedy Space Center Visitor Complex in Florida.

Two veteran NASA astronauts joined the ranks of the U.S. Astronaut Hall of Fame, Ellen Ochoa, the first Hispanic woman to travel to space and current JSC Director, and Michael Foale, the only U.S. astronaut to serve on both the International Space Station and Russian space station Mir. Credit: NASA

Ochoa and Foale joined the ranks of 93 prestigious American space heroes who have previously received the same honor over the years since the U. S. Astronaut Hall of Fame was established in its current incarnation more than 30 years ago by the founders of the Astronaut Scholarship Foundation, the six surviving Mercury 7 astronauts.

The new duo comprise the 16th group of space shuttle astronauts to be inducted into the Hall of Fame.

Thus the Astronaut Hall of Fame now numbers 95 heroic and famous space explorers.

Foale and Ochoa unveiled their new ‘Hall of Fame’ commemorative plaques during the ceremony.

The plaques will be put on public display for all to see where they will join the others at the new U.S. Astronaut Hall of Fame (AHOF) pavilion – which had its Grand Opening in November 2016 as part of the new Heroes & Legends attraction located at the entrance to the Kennedy Space Center Visitor Complex.

The Astronaut Scholarship Foundation has awarded more than $4 million in merit-based scholarships to more than 400 brilliant students since its inception.

Group shot of 21 NASA astronauts posing with the two new NASA astronauts – Michael Foale and Ellen Ochoa – who were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 during induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

Some 21 legendary NASA astronauts were on hand for the induction ceremony, including: Robert Cabana, Dan Brandenstein, Al Worden, Charlie Duke, Karol “Bo” Bobko, Brian Duffy, Scott Altman, Michael Bloomfield, Charles Bolden, Ken Bowersox, Curtis Brown, Michael Coats, Robert Crippen, Sam Durrance, Robert Gibson, Fred Gregory, Rhea Seddon, Brewster Shaw, Loren Shriver, Kathryn Thornton, and James Wetherbee.

Two veteran retired NASA astronauts – Michael Foale and Ellen Ochoa – were inducted into the U.S. Astronaut Hall of Fame on May 19, 2017 and show their medals to the media after induction ceremony held below Space Shuttle Atlantis in the display pavilion at the Kennedy Space Center Visitor Complex in Florida. Credit: Ken Kremer/kenkremer.com

Here is a description of their space flight accomplishments from NASA:

“Ochoa joined NASA in 1988 as a research engineer at NASA’s Ames Research Center in California after earning a doctorate in electrical engineering from Stanford University. She joined Johnson in 1990, when she was selected as an astronaut candidate. After completing astronaut training, she served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, conducting atmospheric studies to better understand the effect of solar activity on Earth’s climate and environment.

Ochoa has flown in space four times, including the STS-66, STS-96 and STS-110 missions, logging nearly 1,000 hours in orbit. She is Johnson’s first Hispanic director and its second female director. She also has served as the center’s deputy director and director of Flight Crew Operations.”

“Foale, whose hometown is Cambridge, England, earned a doctorate in laboratory astrophysics from the University of Cambridge, Queens’ College. A naturalized U.S. citizen, Foale was selected as an astronaut candidate in June 1987. Before his first spaceflight, he tested shuttle flight software in the Shuttle Avionics Integration Laboratory simulator.

Foale was a crew member on six space missions, including STS-45, STS-56, STS-63, STS-84, STS-103 and Soyuz TMA-3. During STS-84, he helped reestablish the Russian Space Station Mir after it was degraded by a collision and depressurization. Foale logged more than 374 days in space, including four spacewalks totaling 22 hours and 44 minutes.

Foale also served as chief of the Astronaut Office Expedition Corps, assistant director (technical) of Johnson, and deputy associate administrator for exploration operations at NASA Headquarters in Washington. His last assignment at Johnson was as chief of the Soyuz Branch, Astronaut Office, supporting Soyuz and International Space Station operations and space suit development. Foale retired from NASA in 2013.”

Read this description of the U.S. Astronaut Hall of Fame Induction Process and Eligibility:

“Each year, inductees are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. It includes the new home of the U.S. Astronaut Hall of Fame, presented by Boeing. In addition to displays honoring the 93 Americans currently enshrined in the hall, the facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It provides the background and context for space exploration and the legendary men and women who pioneered the nation’s journey into space. Credit: Ken Kremer/kenkremer.com

Spaceflight Will Give You The Body Of An Elderly Alcoholic Shut In

At least, that was what the results of a recent study conducted by the University of Colorado’s Anschutz Medical Campus suggest. After examining a group of test mice that spent two weeks in space aboard STS-135 – the final mission of NASA’s space shuttle program – they concluded that spending prolonged periods of time in space could in fact result liver damage.

For some time now, scientists have understood that exposure to zero-gravity or micro-gravity environments comes with its share of health effects. But so far, the research has been largely confined to other areas of the human body. Understanding the effects it has on internal organs and other aspects of one’s health are of extreme importance as NASA begins preparations for a crewed mission to Mars.

Continue reading “Spaceflight Will Give You The Body Of An Elderly Alcoholic Shut In”

13 MORE Things That Saved Apollo 13

“Things had gone real well up to at that point of 55 hours, 54 minutes and 53 seconds (mission elapsed time),” said Apollo 13 astronaut Fred Haise as he recounted the evening of April 13, 1970, the night the Apollo 13’s command module’s oxygen tank exploded, crippling the spacecraft and endangering the three astronauts on board.

“Mission Control had asked for a cryo-stir in the oxygen tank …and Jack threw the switches,” Haise continued. “There was a very loud bang that echoed through the metal hull, and I could hear and see metal popping in the tunnel [between the command module and the lunar lander]… There was a lot of confusion initially because the array of warning lights that were on didn’t resemble anything we have ever thought would represent a credible failure. It wasn’t like anything we were exposed to in the simulations.”

What followed was a four-day ordeal as Haise, Jim Lovell and Jack Swigert struggled to get back to Earth, as thousands of people back on Earth worked around the clock to ensure the astronauts’ safe return.

Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC.  Image courtesy Jerry Woodfill.
Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC. Image courtesy Jerry Woodfill.

Haise described the moment of the explosion during an event in 2010 at the Smithsonian Air and Space Museum commemorating the 40th anniversary of the mission that’s been called a successful failure.

In 2010, Universe Today also commemorated the Apollo 13 anniversary with a series of articles titled “13 Things That Saved Apollo 13.” We looked at 13 different items and events that helped turn the failure into success, overcoming the odds to get the crew back home. We interviewed NASA engineer Jerry Woodfill, who helped design the alarm and warning light system for the Apollo program, which Haise described above.

Now, five years later on the 45th anniversary of Apollo 13, Woodfill returns with “13 MORE Things That Saved Apollo 13.” Over the next few weeks, we’ll look at 13 additional things that helped bring the crew home safely.

Jerry Woodfill working in the Apollo Mission Evaluation Room.  Credit:  Jerry Woodfill.
Jerry Woodfill working in the Apollo Mission Evaluation Room. Credit: Jerry Woodfill.

Woodfill has worked for NASA for almost 50 years as an engineer, and is one of 27 people still remaining at Johnson Space Center who were also there for the Apollo program. In the early days of Apollo, Woodfill was the project engineer for the spacecraft switches, gauges, and display and control panels, including the command ship’s warning system.

On that night in April 1970 when the oxygen tank in Apollo 13’s command module exploded, 27-year-old Woodfill sat at his console in the Mission Evaluation Room (MER) at Johnson Space Center, monitoring the caution and warning system.

“It was 9:08 pm, and I looked at the console because it flickered a few times and then I saw a master alarm come on,” Woodfill said. “Initially I thought something was wrong with the alarm system or the instrumentation, but then I heard Jack Swigert in my headset: “Houston, we’ve had a problem,” and then a few moments later, Jim Lovell said the same thing.”

Listen to the audio of communications between the crew and Mission Control at the time of the explosion:

Located in an auxiliary building, the MER housed the engineers who were experts in the spacecrafts’ systems. Should an inexplicable glitch occur, the MER team could be consulted. And when alarms starting ringing, the MER team WAS consulted.

Woodfill has written a webpage detailing the difference between the MER and Misson Control (Mission Operations Control Room, or MOCR).

The Mission Evaluation Room.  Credit: Jerry Woodfill.
The Mission Evaluation Room. Credit: Jerry Woodfill.

The ebullient and endearing Woodfill brings a wealth of knowledge — as well as his love for public outreach for NASA — to everything he does. But also, for the past 45 years he has studied the Apollo 13 mission in intricate detail, examining all the various facets of the rescue by going through flight transcripts, debriefs, and other documents, plus he’s talked to many other people who worked during the mission. Fascinated by the turn of events and individuals involved who turned failure into success, Woodfill has come up with 13 MORE things that saved Apollo 13, in addition to the original 13 he shared with us in 2010.

Woodfill tends to downplay both his role in Apollo 13 and the significance of the MER.

“In the MER, I was never involved or central to the main events which rescued Apollo 13,” Woodfill told Universe Today. “Our group was available for mission support. We weren’t flight controllers, but we were experts. For other missions that were routine we didn’t play that big of a role, but for the Apollo 13 mission, we did play a role.”

But Apollo Flight Director Gene Kranz, also speaking at the 2010 event at the Smithsonian Air and Space Museum, has never forgotten the important role the MER team played.

“The thing that was almost miraculous here [for the rescue], was I think to a great extent, the young controllers, particularly the systems guys who basically invented the discipline of what we now call systems engineering,” Kranz said. “The way these guys all learned their business, … got to know the designs, the people and the spacecraft … and they had to translate all that into useful materials that they could use on console in real time.”

Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.
Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.

Join Universe Today in celebrating the 45th anniversary of Apollo 13 with Woodfill’s insights as we discuss each of the 13 additional turning points in the mission. And here’s a look back at the original “13 Things That Saved Apollo 13:

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Incredible “Birdman”-like Tracking-Shot Timelapse of Earth from Space

The Academy Award winning film “Birdman” used what’s called tracking shot to create the sense of a seamless one-shot film. A new timelapse created from imagery captured by astronauts on the International Space Station uses the same technique — which has not been used in previous ISS timelapses — with stunning results. Additionally, the footage is very recent, from January and February 2015. It was compiled by Phil Selmes.

“The footage has been composited and edited to show enhanced camera movement, a day to night transition, and an uninterrupted camera movement which links two timelapse shots seamlessly,” Selmes told Universe Today. “These processes have never been used to present ISS time lapse footage in this way before.”
Continue reading “Incredible “Birdman”-like Tracking-Shot Timelapse of Earth from Space”

All About That Space

The Pathways Interns of NASA’s Johnson Space Center have been working very hard lately with the successful Orion launches. They decided it was time to celebrate, and to remind everyone what they’re really excited about. So they’ve taken the hit song “All About that Bass,” by Meghan Trainor, and rewritten the lyrics to be a little more appropriate for their purpose. They wanted to raise excitement over the successful Orion tests, and promote the amazing work going on at NASA and Johnson Space Center. They’re bringing rockets back!

Is NASA Dead? Not Even Close.

If you’re a frequent reader of Universe Today you know that, despite the end of the Shuttle program and the constant battle for a piece of the federal budget, NASA has a lot on their plate for future space exploration missions. But there are still a lot of people among the general public who think that the U.S. space administration is “dead,” or, at the very least, in the process of dying. Which is unfortunate because there’s actually a lot going on, both in space and in development on the ground.

The video above, released Monday by Johnson Space Center, shows highlights from 2013 as well as some of the many things NASA has in progress. As anyone can see, rumors of its death have been greatly exaggerated! (By whom I’m still not quite sure.)

Visit the Johnson Space Center site for more information and updates on current and future missions.

(Tip of the visor to astronaut Clayton Anderson for the video!)