NASA’s ‘Hubble Hugger’ and Science Chief John Grunsfeld To Retire

In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA's Science Mission Directorate, is shown in space shuttle Columbia's cargo bay during the STS-109 Hubble servicing mission. Credits: NASA
In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA's Science Mission Directorate, is shown in space shuttle Columbia's cargo bay during the STS-109 Hubble servicing mission.  Credits: NASA
In this March 2002 image, John Grunsfeld, former astronaut and associate administrator of NASA’s Science Mission Directorate, is shown in space shuttle Columbia’s cargo bay during the STS-109 Hubble servicing mission. Credits: NASA

Five time space shuttle astronaut and current NASA science chief John Grunsfeld – best known as the ‘Hubble Hugger’ for three critical and dramatic servicing and upgrade missions to the iconic Hubble Space Telescope – his decided to retire from the space agency he faithfully served since being selected as an astronaut in 1992.

“John Grunsfeld will retire from NASA April 30, capping nearly four decades of science and exploration with the agency. His tenure includes serving as astronaut, chief scientist, and head of NASA’s Earth and space science activities,” NASA announced.

Indeed, Grunsfeld was the last human to touch the telescope during the STS-125 servicing mission in 2009 when he served as lead spacewalker.

The STS-125 mission successfully upgraded the observatory to the apex of its scientific capability during five spacewalks by four astronauts and extended the life of the aging telescope for many years. Hubble remains fully operable to this day!

In April 2015, Hubble celebrated 25 years of operations, vastly outperforming its planned lifetime of 15 years.

“Hubble has given us 25 years of great service. Hopefully we’ll get another 5 to 10 years of unraveling the mysteries of the Universe,” Grunsfeld told me during a recent interview at NASA Goddard.

Astronaut John Grunsfeld performs work on the Hubble Space Telescope on the first of five STS-125 spacewalks. Credit: NASA
Astronaut John Grunsfeld performs work on the Hubble Space Telescope on the first of five STS-125 spacewalks. Credit: NASA

In his most recent assignment, Grunsfeld was NASA’s Science Chief working as the Associate Administrator for the Science Mission Directorate (SMD) at NASA Headquarters in Washington, D.C. since January 2012.

“John leaves an extraordinary legacy of success that will forever remain a part of our nation’s historic science and exploration achievements,” said NASA Administrator Charlie Bolden, in a statement.

“Widely known as the ‘Hubble Repairman,’ it was an honor to serve with him in the astronaut corps and watch him lead NASA’s science portfolio during a time of remarkable discovery. These are discoveries that have rewritten science textbooks and inspired the next generation of space explorers.”

Grunsfeld was inducted into the U.S. Astronaut Hall of Fame in 2015.

He received his PhD in physics in 1988 and conducted extensive research as an astronomer in the fields of x-ray and gamma ray astronomy and high-energy cosmic ray studies.

Crew of STS-125, including John Grunsfeld, center, during walkout to Astrovan ahead of launch on May 11, 2009, from the Kennedy Space Center in Florida on final mission to service NASA’s Hubble Space Telescope. Credit: Ken Kremer – kenkremer.com
Crew of STS-125, including John Grunsfeld, center, during walkout to Astrovan ahead of launch on May 11, 2009, from the Kennedy Space Center in Florida on final mission to service NASA’s Hubble Space Telescope. Credit: Ken Kremer – kenkremer.com

NASA said that Grunsfeld’s deputy Geoff Yoder will serve as SMD acting associate administrator until a successor is named.

“After exploring strange new worlds and seeking out new life in the universe, I can now boldly go where I’ve rarely gone before – home,” said Grunsfeld.

“I’m grateful to have had this extraordinary opportunity to lead NASA science, and know that the agency is well-positioned to make the next giant leaps in exploration and discovery.”

During his tenure as science chief leading NASA’s Science Mission Directorate Grunsfeld was responsible for managing over 100 NASA science missions including the Mars orbital and surface assets like the Curiosity and Opportunity Mars rovers, New Horizons at Pluto, MESSENGER, upcoming Mars 2020 rover and OSIRIS-Rex as well as Earth science missions like the Deep Space Climate Observatory, Orbiting Carbon Observatory-2, and Global Precipitation Measurement spacecraft -which resulted numerous groundbreaking science, findings and discoveries.

NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit:  Ken Kremer/kenkremer.com
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

Dr. Grunsfeld is a veteran of five spaceflights: STS-67 (1995), STS-81 (1997), STS-103 (1999) STS-109 (2002) and STS-125 (2009), during which time he logged more than 58 days in space, including 58 hours and 30 minutes of EVA in 8 spacewalks.

He briefly retired from NASA in December 2009 to serve as Deputy Director of the Space Telescope Science Institute, in Baltimore, Maryland. He then returned to NASA in January 2012 to serve as SMD head for over four years until now.

NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland.  Credit: Ken Kremer/kenkremer.com
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland. Credit: Ken Kremer/kenkremer.com

From his NASA bio, here is a summary of John Grunsfeld’s space flight experience during five shuttle flights:

STS-67/Astro-2 Endeavour (March 2 to March 18, 1995) launched from Kennedy Space Center, Florida, and landed at Edwards Air Force Base, California. It was the second flight of the Astro observatory, a unique complement of three ultraviolet telescopes. During this record-setting 16-day mission, the crew conducted observations around the clock to study the far ultraviolet spectra of faint astronomical objects and the polarization of ultraviolet light coming from hot stars and distant galaxies. Mission duration was 399 hours and 9 minutes.

STS-81 Atlantis (January 12 to January 22, 1997) was a 10-day mission, the fifth to dock with Russia’s Space Station Mir and the second to exchange U.S. astronauts. The mission also carried the Spacehab double module, providing additional middeck locker space for secondary experiments. In 5 days of docked operations, more than 3 tons of food, water, experiment equipment and samples were moved back and forth between the two spacecraft. Grunsfeld served as the flight engineer on this flight. Following 160 orbits of the Earth, the STS-81 mission concluded with a landing on Kennedy Space Center’s Runway 33, ending a 3.9-million-mile journey. Mission duration was 244 hours and 56 minutes.

STS-103 Discovery (December 19 to December 27, 1999) was an 8-day mission, during which the crew successfully installed new gyroscopes and scientific instruments and upgraded systems on the Hubble Space Telescope (HST). Enhancing HST scientific capabilities required three spacewalks (EVAs). Grunsfeld performed two spacewalks, totaling 16 hours and 23 minutes. The STS-103 mission was accomplished in 120 Earth orbits, traveling 3.2 million miles in 191 hours and 11 minutes.

STS-109 Columbia (March 1 to March 12, 2002) was the fourth HST servicing mission. The crew of STS-109 successfully upgraded the HST, installing a new digital camera, a cooling system for the infrared camera, new solar arrays and a new power system. HST servicing and upgrades were accomplished by four crewmembers during a total of five EVAs in 5 consecutive days. As Payload Commander on STS-109, Grunsfeld was in charge of the spacewalking activities and the Hubble payload. He also performed three spacewalks totaling 21 hours and 9 minutes, including the installation of the new Power Control Unit. STS-109 orbited the Earth 165 times and covered 3.9 million miles in over 262 hours.

STS-125 Atlantis (May 11 to May 24, 2009) was the fifth and final Hubble servicing mission. After 19 years in orbit, the telescope received a major renovation that included the installation of a new wide-field camera, a new ultraviolet telescope, new batteries, a guidance sensor, gyroscopes and other repairs. Grunsfeld served as the lead spacewalker in charge of the spacewalking and Hubble activities. He performed three of the five spacewalks on this flight, totaling 20 hours and 58 minutes. For the first time while in orbit, two scientific instruments were surgically repaired in the telescope. The STS-125 mission was accomplished in 12 days, 21 hours, 37 minutes and 09 seconds, traveling 5,276,000 miles in 197 Earth orbits.

Launch of Space Shuttle Atlantis on STS-125 and the final servicing mission to the Hubble Space Telescope on May 11, 2009 from Launch Complex-39A at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
Launch of Space Shuttle Atlantis on STS-125 and the final servicing mission to the Hubble Space Telescope on May 11, 2009 from Launch Complex-39A at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Hubble, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

James Webb Space Telescope Mirror Installation Reaches Halfway Point

This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA's Goddard Space Flight Center/Chris Gunn

As history closes in on 2015, assembly of NASA’s James Webb Space Telescope (JWST) reached a historic milestone as the installation of the primary mirrors onto the telescope structure reached the halfway point to completion and marks the final assembly phase of the colossal observatory.

Technicians have just installed the ninth of 18 primary flight mirrors onto the mirror holding backplane structure at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. Continue reading “James Webb Space Telescope Mirror Installation Reaches Halfway Point”

First Mirror Installed on NASA’s Webb Telescope, Final Assembly Phase Starts

The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA/Chris Gunn
The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA/Chris Gunn
The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA/Chris Gunn
Story/photos updated

After years of construction, the first of 18 primary flight mirrors has been installed onto NASA’s James Webb Space Telescope (JWST) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, signifying the start of the final assembly phase for the mammoth observatory that will eventually become the most powerful telescope ever sent to space.

The milestone first mirror installation was achieved this week just ahead of the Thanksgiving holiday as the engineering team, working inside the massive clean room at NASA Goddard, used a robotic arm to precisely lift and lower the gold coated mirror into place on the observatory’s critical mirror holding backplane assembly.

Each of the 18 hexagonal-shaped primary mirror segments Continue reading “First Mirror Installed on NASA’s Webb Telescope, Final Assembly Phase Starts”

NASA Webb Telescope Construction Leaps Forward with Delivery of Mirror Holding Backbone Flight Structure

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com
Story/imagery updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – The construction pace for NASA’s James Webb Space Telescope (JWST) took a major leap forward with delivery of the actual flight structure that serves as the observatory’s critical mirror holding backbone – to NASA’s Goddard Space Flight Center in Greenbelt, Maryland and observed by Universe Today.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in an exclusive interview with Universe Today at NASA Goddard during a visit to the flight structure – shown in my photos herein. Note: Read an Italian language version of this story – here at Alive Universe

And the mammoth $8.6 Billion Webb telescope has mammoth scientific objectives as the scientific successor to NASA’s Hubble Space Telescope (HST) – now celebrating its 25th anniversary in Earth orbit.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

How is that possible?

“James Webb has a much bigger mirror than Hubble. So its resolution is much better,” said astronaut and NASA science chief John Grunsfeld, during an exclusive interview at NASA Goddard. Grunsfeld flew on a trio of Hubble servicing missions aboard the Space Shuttle, including the final one during STS-125 in 2009.

“JWST can look back further in time, and a greater distance than Hubble, so we can see those first stars and galaxies formed in the Universe.”

These discoveries are only possible with Webb, which will become the most powerful telescope ever sent to space when it launches in 2018.

Up close view of actual side wing backplane of NASA's James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Up close view of actual side wing backplane of NASA’s James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The massive JWST flight structure unit includes the “backplane assembly” that clasps in place all of the telescopes primary and secondary mirrors, as well as its ISIM science module loaded with the observatory’s quartet of state-of-the-art research instruments.

“The backplane looks really great,” Grunsfeld told me.

Numerous NASA centers and aerospace companies are involved in building the observatory and its backplane structure holding the mirrors that will search back some 13.4 billion years.

“The backplane structure just arrived in late August from Northrop Grumman Aerospace Systems in Redondo Beach, California,” said Sandra Irish, JWST lead structural engineer during an interview with Universe Today at the NASA Goddard cleanroom facility.

“This is the actual flight hardware.”

Side view of flight unit mirror backplane assembly structure for NASA's James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration.  JWST is being assembled technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Side view of flight unit mirror backplane assembly structure for NASA’s James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration. JWST is being assembled technicians inside the cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The purpose of JWST’s backplane assembly is to hold the telescopes 18 segment, 21-foot (6.5-meter) diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the observatory to peer out into deep space for precise science gathering measurements never before possible.

The massive telescope structure “includes the primary mirror backplane assembly; the main backplane support fixture; and the deployable tower structure that lifts the telescope off of the spacecraft. The three arms at the top come together into a ring where the secondary mirror will reside,” say officials.

The backplane traveled a long and winding road before arriving at Goddard.

“The backplane structure was designed and built at Orbital ATK with NASA oversight,” Irish explained. The assembly work was done at the firms facilities in Magna, Utah.

“Then it was sent to Northrop Grumman in Redondo Beach, California for static testing. Then it came here to Goddard. Orbital ATK also built the composite tubes for the ISIM science module structure.”

The observatory’s complete flight structure measures about 26 feet (nearly 8 meters) from its base to the tip of the tripod arms and mirror mount holding the round secondary mirror.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

The flight structure and backplane assembly arrived at Goddard in its stowed-for-launch configuration after being flown cross country from California.

“It is here for the installation of all the mirrors to build up the entire telescope assembly here at Goddard. It will be fully tested here before it is delivered to the Johnson Space Center in Houston and then back to California,” Irish elaborated.

The overall assembly is currently attached to a pair of large yellow and white fixtures that firmly secure the flight unit, to stand it upright and rotate as needed, as it undergoes acceptance testing by engineers and technicians before commencement of the next big step – the crucial mirror installation that starts soon inside the world’s largest cleanroom at NASA Goddard.

Overhead cranes are also used to maneuver the observatory structure as engineers inspect and test the unit.

But several weeks of preparatory work are in progress before the painstakingly precise mirror installation can begin under the most pristine cleanroom operating conditions.

“Right now the technicians are installing harnesses that we need to mount all over the structure,” Irish told me.

“These harnesses will go to our electronic systems and the mirrors in order to monitor their actuation on orbit. So that’s done first.”

What is the construction sequence at Goddard for the installation of the mirrors and science instruments and what comes next?

“This fall we will be installing every mirror, starting around late October/early November. Then next April 2016 we will install the ISIM science module inside the backplane structure.”

“The ISIM mounts all four of the telescope science instrument. So the mirrors go on first, then the ISIM gets installed and then it will really be the telescope structure.” ISIM carries some 7,500 pounds (2400 kg) of telescope optics and instruments.

“Then starting about next July/August 2016 we start the environmental testing.”

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts holding three mirrors each. They will be unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. Then be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned and nearly motionless in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

To account for the tiniest of errors and enhance science, each of the primary mirrors is equipped with actuators for minute adjustments.

“A beautiful advantage of Webb that’s different from Hubble is the fact that we do have actuation [capability] of every single one of our mirrors. So if we are off by just a little bit on either our calculations or from misalignment from launch or the zero gravity release, we can do some fine adjustments on orbit.”

“We can adjust every mirror within 50 nanometers.”

“That’s important because we can’t send astronauts to fix our telescope. We just can’t.”

“The telescope is a million miles away.”

NASA’s team at Goddard has already practiced mirror installation because there are no second chances.

“We only have one shot to get this right!” Irish emphasized.

Watch for more on the mirror installation in my upcoming story.

JWST is the successor to the 25 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

“The telescope is on schedule for its launch in 2018 in October,” Mather told me.

And the payoff from JWST will be monumental!

“On everything from nearby planets to the most distant universe, James Webb will transform our view of the Universe,” Grunsfeld beams.

Watch for more on JWST construction and mirror installation in part 2 soon.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland.  Credit: Ken Kremer/kenkremer.com
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland. Credit: Ken Kremer/kenkremer.com

NASA’s New Horizons Makes Major Discoveries: Young Ice Mountains on Pluto and Crispy Young Chasms on Charon

New close-up images of a region near Pluto’s equator reveal a giant surprise -- a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI

New close-up images of a region near Pluto’s equator reveal a giant surprise — a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI
Story/photos expanded[/caption]

APPLIED PHYSICS LABORATORY, LAUREL, MD – Scientists leading NASA’s historic New Horizons mission to the Pluto system announced the first of what is certain to be a tidal wave of new discoveries, including the totally unexpected finding of young ice mountains at Pluto and crispy clear views of young fractures on its largest moon Charon, at a NASA media briefing today (July 15) at the Applied Physics Laboratory (APL) in Laurel, Maryland.

A treasure trove of long awaited data has begun streaming back to Mission Control at Johns Hopkins University Applied Physics Laboratory to the mouth watering delight of researchers and NASA.

With the first ever flyby of Pluto, America completed the initial up close reconnaissance of the planets in our solar system. Pluto was the last unexplored planet, building on missions that exactly started 50 years ago in 1965 when Mariner IV flew past Mars.

“Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington.

“The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations.”

Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep.  Credit: NASA-JHUAPL-SwRI
Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. Credit: NASA-JHUAPL-SwRI

Today the team announced that New Horizons has already made a totally unexpected discovery showing clear evidence of ice mountains on Pluto’s surface in the bright area informally known as the ‘big heart of Pluto.’

The new close-up image released today showed an icy mountain range near the base of the heart with peaks jutting as high as 11,000 feet (3,500 meters) above the surface, announced John Spencer, New Horizons science team co-investigator at the media briefing.

“It’s a very young surface, probably formed less than 100 million years old,’ said Spencer. “It may be active now.”

Spencer also announce that the heart shaped region will now be named “Tombaugh Reggio” in honor of Clyde Tombaugh, the American astronomer who discovered Pluto in 1930.

“We are seeing water ice.”

“I never would have imagined this!” Spencer exclaimed.

“And I’m very surprised that there are no craters in the first high resolution images.”

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA
Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard NASA’s New Horizons spacecraft, taken on July 13, 2015 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft’s closest approach to Pluto on July 14. The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA-JHUAPL-SwRI

The finding of ice mountains has major scientific implications.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape, said the team.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says Spencer of SwRI.

NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com
NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com

“Pluto may have internal activity. There may be geysers or cryovolcanoes,” New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, said during the media briefing. However there is no evidence for them yet.

Additional high resolution images for “Tombaugh Reggio” area are being transmitted back to Earth today and will continue.

“Finding a mountain range of ice is a complete surprise,” Stern noted.

After a nine year voyage through interplanetary space, New Horizons barreled past the Pluto system on Tuesday, July 14 for a history making first ever flyby at over 31,000 mph (49,600 kph), and survived the passage by swooping barely 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.

The team had to wait another 12 hours for confirmation that the spacecraft lived through the daring encounter when signals were reacquired as planned at 8:53 p.m. EDT last night. Since New Horizons swung past Pluto to continue its voyage, the probe is now more than million miles outbound just 24 hours later.

NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit:  Ken Kremer/kenkremer.com
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during  live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com

NASA’s New Horizons Zooms By Pluto, Solar Systems Last Planet – King of The Kuiper Belt

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA

APPLIED PHYSICS LABORATORY, LAUREL, MD – With this morning’s (July 14) do or die flyby of Pluto by NASA’s New Horizons spacecraft at 7:49 a.m. EDT while traveling over 3 billion miles away, America completed the initial up close reconnaissance of the last explored planet of our solar system at its frigid, far flung reaches and revealed a remarkably differentiated world dazzling us with alien terrain far beyond anyone’s expectation.

New Horizons barreled past Pluto for a history making first ever flyby at over 31,000 mph (49,600 kph) and passed only 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.

To mark the occasion, NASA released the highest resolution image ever taken of Pluto as the probe swooped past its prey this morning, centered on the two lobed, differentiated ‘heart’.

But because the one ton piano shaped spacecraft has been out of touch with Mission Control for the past day as planned and busily gathering hordes of priceless data, confirmation of a successful flyby didn’t reach Mission Control on Earth until half a day later when New Horizons ‘phoned home’ with critical engineering data confirmed the health of the probe at 8:53 p.m. EDT this evening- basically saying “I’m Alive”.

“With this mission we have we have visited every planet in our solar system,” proclaimed NASA Administrator Charles Bolden this evening, July 14, to a packed house of cheering team members, invited guests and media including Universe Today at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during a live NASA TV media briefing shortly after accomplishing the historic feat after the nine year interplanetary voyage.

“No other nation has that capability. It’s a historic day for exploration.”

“We did it! exclaimed New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, during the live media briefing.

“That’s one small step for New Horizons, one giant leap for mankind,” Stern added, paraphrasing humanity’s first moonwalker, Neil Armstrong.

“New Horizons completes the first planetary reconnaissance, a capstone of our time.”

The Pluto flyby took place on the 50th anniversary of the first interplanetary flyby by America’s Mariner 4 spacecraft when it soared past Mars in 1965.

Pluto and Charon in False Color Show Compositional Diversity. This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image.  These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view.   Credit: NASA/APL/SwRI
Pluto and Charon in False Color Show Compositional Diversity. This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA’s New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image. These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view. Credit: NASA/APL/SwRI

“Today we inspired a whole generation of new explorers,” Bolden said to the crowd emotionally. “And you have more to do!” – as he pointedly acknowledge a crowd of young people in the room.

Pluto is covered by a spectacular array of craters, mountains, valleys, a whale shaped dark feature and a huge heart-shaped continent of pinkinsh bright ice as seen in the image taken on July 13 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface.

“New Horizons has sent back the most detailed data ever of Pluto and its system of moons.”

“Every mission expands our horizons and bring us one step further on the Journey to Mars,” said Bolden regarding NASA’s agency wide plans to send astronauts to the Red Planet during the 2030s.

“You have made Pluto almost human.”

NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015 g, July 14, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during  live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com

Tomorrow, the more than year long data playback begins.

“The best is yet to come,” said John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, at the media briefing.

“You haven’t seen anything yet. There are many more months of data to be sent back.”

“This is like the Curiosity landing. This is just the beginning for fundamental discoveries. It’s a tremendous moment in human history.”

New Horizons Principal Investigator Alan Stern celebrates in mission control after reception of signal from NASA’s New Horizons probe at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland after the successful Pluto flyby on July 14, 2015.  Credit: Ken Kremer/kenkremer.com
New Horizons Principal Investigator Alan Stern celebrates in mission control after reception of signal from NASA’s New Horizons probe at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland after the successful Pluto flyby on July 14, 2015. Credit: Ken Kremer/kenkremer.com

Congratulations rolled in from around the world including President Obama and world renowned physicist Stephen Hawking.

It has been three decades since we last visited planetary bodies at the outer reaches of our solar system when Voyager 2 flew past Uranus and Neptune in 1986 and 1989.

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

11713794_669270766536791_5453013284858242275_o

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14/15 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
How many planets are there? A resounding 9! Says New Horizons Principal Investigator Alan Stern and Ken Kremer/Universe Today, flashing Stern’s signature ‘9 Planets’ call sign. Credit: Ken Kremer/kenkremer.com
How many planets are there? A resounding 9! Says New Horizons Principal Investigator Alan Stern and Ken Kremer/Universe Today, flashing Stern’s signature ‘9 Planets’ call sign. Credit: Ken Kremer/kenkremer.com

NASA Gives ‘GO’ for Mission to Alien Ocean World at Jupiter Moon Europa

Artist's concept of NASA mission streaking over Europa. Credit: NASA/JPL

Artist’s concept of NASA mission streaking over ocean world of Europa. Credit: NASA/JPL
Story updated[/caption]

At long last NASA is heading back to Jupiter’s mysterious moon Europa and doing so in a big way – because scientists believe it harbors an alien ocean of water beneath an icy crust and therefore is “one of the most promising places in the solar system to search for signs of present-day life” beyond Earth.

Top NASA officials have now formally and officially green lighted the Europa ocean world robotic mission and given it the “GO” to move from early conceptual studies into development of the interplanetary spacecraft and mission hardware, to search for the chemical constituents of life.

“Today we’re taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a NASA statement.

The goal is to investigate the habitability of Europa’s subsurface ocean, determine if it possesses the ingredients for life and advance our understanding of “Are we Alone?”

“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” said Grunsfeld.

Water is a prerequisite for life as we know it.

“We know that on Earth everywhere there is water we find life,” says Robert Pappalardo, Europa mission project scientist.

“Therefore Europa is the most likely place to find life in our solar system today because we think there is a liquid water ocean beneath its surface.”

Video caption: Alien Ocean: NASA’s Mission to Europa. Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Credit: NASA

After a thorough review of the mission concept, managers agreed that it “successfully completed its first major review by the agency and now is entering the development phase known as formulation

“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington.

“We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”

In a major milestone leading up to this mission development approval, NASA managers recently announced the selection of the nine science instruments that will fly on the agency’s long awaited planetary science mission to this intriguing world that many scientists suspect could support life, as I reported here last month.

“We are trying to answer big questions. Are we alone,” said Grunsfeld at the May 26 media briefing.

“The young surface seems to be in contact with an undersea ocean.”

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

Planetary scientists have long desired a speedy to return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the moon’s surface in recent times.

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection – whose candidates include the heavy lift Space Launch System (SLS) now under development to launch astronauts on deep space expedition to the Moon, Asteroids and Mars.

The solar powered Europa probe will go into orbit around Jupiter for a three year mission in order to minimize exposure to the intense radiation region that could harm the spacecraft.

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, spectrometers and radar, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

There will many opportunities for close flybys of Europa during the three year primary mission to conduct unprecedented studies of the composition and structure of the surface, icy shell and oceanic interior.

“During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Curt Niebur, Europa program scientist at NASA Headquarters in Washington, told Universe Today.

“These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007.  Credit: NASA
Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007. Credit: NASA

The mission currently has a budget of about $10 million for 2015 and $30 Million in 2016. Over the next three years the mission concept will be further defined.

The mission will be managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California and is expected to cost in the range of at least $2 Billion or more.

The nine science instruments are described in my earlier story- here. They will be developed and built by Johns Hopkins University Applied Physics Laboratory (APL); JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

Right now there is another NASA probe bound for Jupiter, the solar powered Juno orbiter that will investigate the origin of the gas giant. But Juno will not be conducting any observations or flyby’s of Europa.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-27: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

In a major move forward on a long dreamed of mission to investigate the habitability of the subsurface ocean of Jupiter’s mysterious moon Europa, top NASA officials announced today, Tuesday, May 26, the selection of nine science instruments that will fly on the agency’s long awaited planetary science mission to an intriguing world that many scientists suspect could support life.

“We are on our way to Europa,” proclaimed John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, at a media briefing today outlining NASA’s plans for a mission dedicated to launching in the early to mid-2020s. “It’s a mission to inspire.”

“We are trying to answer big questions. Are we alone?”

“The young surface seems to be in contact with an undersea ocean.”

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, radar and spectrometers, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

“Europa has tantalized us with its enigmatic icy surface and evidence of a vast ocean, following the amazing data from 11 flybys of the Galileo spacecraft over a decade ago and recent Hubble observations suggesting plumes of water shooting out from the moon,” says Grunsfeld.

“We’re excited about the potential of this new mission and these instruments to unravel the mysteries of Europa in our quest to find evidence of life beyond Earth.”

Planetary scientists have long desired a speedy return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the surface in recent times.

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection, whose candidates include the heavy lift Space Launch System (SLS).

The solar powered probe will go into orbit around Jupiter for a three year mission.

“The mission concept is that it will conduct multiple flyby’s of Europa,” said Jim Green. director, Planetary Science Division, NASA Headquarters, during the briefing.

“The purpose is to determine if Europa is a habitable place. It shows few craters, a brown gum on the surface and cracks where the subsurface meet the surface. There may be organics and nutrients among the discoloration at the surface.”

Europa is at or near the top of the list for most likely places in our solar system that could support life. Mars is also near the top of the list and currently being explored by a fleet of NASA robotic probes including surface rovers Curiosity and Opportunity.

“Europa is one of those critical areas where we believe that the environment is just perfect for potential development of life,” said Green. “This mission will be that step that helps us understand that environment and hopefully give us an indication of how habitable the environment could be.”

The exact thickness of Europa’s ice shell and extent of its subsurface ocean is not known.

The ice shell thickness has been inferred by some scientists to be perhaps only 5 to 10 kilometers thick based on data from Galileo, the Hubble Space Telescope, a Cassini flyby and other ground and space based observations.

The global ocean might be twice the volume of all of Earth’s water. Research indicates that it is salty, may possess organics, and has a rocky sea floor. Tidal heating from Jupiter could provide the energy for mixing and chemical reactions, supplemented by undersea volcanoes spewing heat and minerals to support living creatures, if they exist.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

“Europa could be the best place in the solar system to look for present day life beyond our home planet,” says NASA officials.

The instruments chosen today by NASA will help answer the question of habitability, but they are not life detection instruments in and of themselves. That would require a follow on mission.

“They could find indications of life, but they’re not life detectors,” said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. “We currently don’t even have consensus in the scientific community as to what we would measure that would tell everybody with confidence this thing you’re looking at is alive. Building a life detector is incredibly difficult.”

‘During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Niebur told Universe Today. “These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

“The mass spectrometer has a range of 1 to 2000 daltons, Niebur told me. “That’s a much wider range than Cassini. However there will be no means aboard to determine chirality.” The presence of Chiral compounds could be an indicator of life.

Right now the Europa mission is in the formulation stage with a budget of about $10 million this year and $30 Million in 2016. Over the next three years the mission concept will be defined.

The mission is expected to cost in the range of at least $2 Billion or more.

Jupiter Moon Europa, Ice Rafting View
Jupiter Moon Europa, Ice Rafting View

Here’s a NASA description of the 9 instruments selected:

Plasma Instrument for Magnetic Sounding (PIMS) — principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa’s ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.

Interior Characterization of Europa using Magnetometry (ICEMAG)
— principal investigator Dr. Carol Raymond of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer will measure the magnetic field near Europa and – in conjunction with the PIMS instrument – infer the location, thickness and salinity of Europa’s subsurface ocean using multi-frequency electromagnetic sounding.


Mapping Imaging Spectrometer for Europa (MISE)
— principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa’s ocean.

Europa Imaging System (EIS) — principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and will provide images of areas of Europa’s surface at up to 100 times higher resolution.

Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) — principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa’s icy crust from the near-surface to the ocean, revealing the hidden structure of Europa’s ice shell and potential water within.

Europa Thermal Emission Imaging System (E-THEMIS) — principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This “heat detector” will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.

MAss SPectrometer for Planetary EXploration/Europa (MASPEX) — principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa’s extremely tenuous atmosphere and any surface material ejected into space.

Ultraviolet Spectrograph/Europa (UVS) — principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa’s surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon’s rarefied atmosphere.

SUrface Dust Mass Analyzer (SUDA) — principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons, Approaching Pluto, Detects Signs of Polar Caps

The overview of the New Horizon journey to the binary system of Pluto and Charon. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)

New Horizons’ LORRI April 28, 2015 Posting

The latest set of images from the long range imager, LORRI, on New Horizons now reveals surface features. At a press conference today, exhilarated NASA scientists discussed what the images are now suggesting. (Photo  Credit: NASA/New Horizons)

Today, a trio of NASA scientists expressed their exhilaration with the set of new Pluto images released by the New Horizons team. “Land Ho” exclaimed Dr.  Alan Stern as he first tried to explain where they are on their long journey. Nearly 500 years ago, not even Magellan on a three year journey to circumnavigate the Earth waited so long. A ten year journey is beginning to reveal fascinating new details of the dwarf planet Pluto, once the ninth planet of our Solar System. The latest images show surface features on Pluto suggesting polar caps.

A team effort that Dr. Weaver said called upon leading experts to resolve these newest details of Pluto’s surface. The inset at left shows schematically the geographic relationship of the two bodies as they orbit each other. The inset at right shows surface details at 3x maximum resolution. (Photo Credit: NASA/New Horizons)

The NASA press conference took place this afternoon, anchored by Dr. John Grunsfeld, Associate Administrator for the Science Mission Directorate who quickly turned over the discussion to the project scientist of the New Horizons mission, Dr. Alan Stern from the Southwest Research Institute of San Antonio, Texas. Grunsfeld began by stating NASA’s mission – “to explore, discover and inspire” and added that New Horizons is certainly executing these prime objectives.

The overview of the New Horizon journey to the binary system of Pluto and Charon. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)
The overview of the New Horizon journey to the binary system, Pluto and Charon, and beyond. The NASA probe is now surpassing Hubble imagery. (Photo Credit: NASA/New Horizons)

Alan Stern started off by expressing his excitement with the latest results from the long range telescope on board New Horizons, LORRI, but emphasized he represents a team effort, the culmination of decades of work.

With just 11 weeks remaining and now 98% of the way to Pluto, the latest set of images from LORRI have now revealed details better than the best that was previously attainable – from the Hubble Space Telescope. Most incredible are indications of polar caps on the dwarf planet Pluto.

Pluto
Until now, the Hubble space telescope had shown tantalizing but mottled features of the surface of Pluto (Photo Credit: NASA)

Dr. Stern, stated that the 25th Anniversay of the Hubble mission has also functioned as a segue to what is about to unfold from New Horizons. Until now, the best images of Pluto’s surface had been wrestled out of images from Hubble with computer processing. Yet, at the present distance New Horizons remains, his team is still relying on image processing to reveal these first surface details.

The gravitational tug of war of the unique binary system has forced both small bodies to forever face each other, similar to how our Moon always faces the Earth. (Photo Credit: NASA/New Horizons)

Dr. Stern stated how remarkable the Pluto-Charon system is. The earlier set of LORRI images from 2014 had shown the gravitational dance of the two small bodies. He stated that they are truly a binary system and a type we have never explored before. Pluto-Charon is a dual synchronous, tidally locked system. Dr. Stern explained that the Earth, close-in to the Sun, and their space probe New Horizons, now on its final approach, is viewing the sunlit side of Pluto and Charon.

The system is tipped over relative to its orbital plane around the Sun. Dr. Stern stated, “it is like watching Pluto rotate on a spit.” He said that we are nearly seeing it face on; similar to an observer hovering far above the Earth’s polar cap and looking down upon the Earth-Moon system. The orbits of the two bodies, as seen in the LORRI image sequence (animations, above), appear elliptical (oval), however, due to the extreme and final state of this binary system, the orbits are perfect circles; the eccentricities are zero! New Horizons is just approaching slightly off center.

Images of the New Horion space probe shows its compactness, necessarily to minimize weight, volume, power demands and achieve the high velocity necessary to reach Pluto in nine years. Af left the instruments are shown included the long range imager, LORRI. (Photo Credit: NASA/New Horizons)
Images of the New Horion space probe shows its compactness, necessarily to minimize weight, volume, power demands and achieve the high velocity necessary to reach Pluto in nine years. Af left the instruments are shown included the long range imager, LORRI. (Photo Credit: NASA/New Horizons)

Dr. Stern continued and explained how this latest set is now showing surface features on Pluto. The features “are suggesting the presence of polar caps”, however he also emphasized that it remains only suggestive until New Horizons can deliver more details, that is, higher resolution, color imagery from the Ralph imager and spectroscopic data (Ralph and Alice imaging spectrometers) to reveal composition. Dr. Stern turned over the press conference to Dr. Hal Weaver of John Hopkins’ Applied Physics Laboratory, the lead scientist for the LORRI instrument.

LORRI, the Long Range Reconnaissance Imager, in details of a schematic. (Credit: NASA/New Horizons)
LORRI, the Long Range Reconnaissance Imager, shown through details of a schematic. (Credit: NASA/New Horizons)

LORRI as Dr. Weaver explained is a state-of-the-art instrument. A fixed focus telescopic camera, functional from room temp down to 180 degees Fahrenheit below zero and utilizes an 8 inch primary mirror. The optical quality is extraordinary but the light gathering power is the same as one has in an amateur 8 inch telescope such as offered by Meade or Celestron. Still further, Dr. Weaver stated that LORRI is also extremely efficient and ligthweight, using less than 5 watts of power and weighing less than 20 lbs.

New York City's Manhattan is shown as an example of the resolving power the Ralph multi-spectral imager will have at closest approach to Pluto and Charon (Photo Credit: NASA/New Horizons)
New York City’s Manhattan is shown as an example of the resolving power the Ralph multi-spectral imager will have at closest approach to Pluto and Charon (Photo Credit: NASA/New Horizons)

Dr. Weaver explained how the raw images from LORRI are presently little more than blotches of light, unspectacular at first glance, but with image processing, the details discussed today are revealed. The New Horizons team employed world-class experts in the technique of Image Deconvolution. It was again Hubble that spawned “a cottage industry”, over 20 years ago, including one expert – Todd Lauer of the National Optical Astronomy Observatory. Lauer and others took on the challenge of extracting quality imagery from the Hubble space telescope as it struggled with the astigmatism accidentally built into its optical system. A NASA Space Shuttle mission delivered and inserted a corrective lens into Hubble which has made its 25 years of service possible.

Without the imaging processing technique of deconvolution, the latest images of Pluto are mere blotches. Dr. Weaver credited experts born from the Hubble astigmatism from 20 years ago. (Photo Credit: NASA/New Horizons)
Without the imaging processing technique of deconvolution, the latest images of Pluto are mere blotches. Dr. Weaver credited experts born from the Hubble astigmatism from 20 years ago. (Photo Credit: NASA/New Horizons)

And the New Horizons’ processed images are now slightly better than Hubble and will just get much better. From the Q&A with the press. Weaver explained that while the images show more detail, Earth-based and Hubble images remain more light sensitive. Hubble sets an upper limit to the size of any remaining moons to be discovered. Weaver stated that by June, New Horizons’ LORRI will exceed the light sensitivity limits of Hubble. If there are more moons to be found, June will be the month.

An artist's illustration of Pluto. With a tenuous atmosphere that has so far defied explanations, New Horizons is altogether revealing a light red - peach - colored surface but with large contrasting areas of white and dark red. (Illust. Credit: NASA/New Horizons)
An artist’s illustration of Pluto. With a tenuous atmosphere that has so far defied explanations, New Horizons is altogether revealing a light red – peach – colored surface but with large contrasting areas of white and dark red. (Illust. Credit: NASA/New Horizons)

Through the Q&A, Dr. Stern stated that an extraordinary aspect of Pluto’s atmosphere is that the planet’s atmosphere has continued to expand despite having passed a point in its orbit at which it should be freezing and condensing onto its surface. The atmosphere expanded 200 to 300% in the last decade. With the limited observations, Stern and other Pluto experts surmise that there is a lag in the climate akin to how our hottest months lag the beginning of Summer by a couple of months. Perhaps, a latent heat stored up in the near surface has continued to vaporize frozen gases thus building up the atmosphere more than first expected.

The composition of the dwarf planet’s surface was discussed. Most evident in Earth-based spectroscopy is that there is molecular nitrogen, carbon monoxide and methane. Stern stated they these species of molecules could explain the bright and dark spots of the surface. However, he emphasized that Pluto is composed of 70% rock by mass and the remaining is ice. Charon stands in remarkable contrast to Pluto. Chraon has primarily water and ammonia hydrates on its surface; no detectable atmosphere (so far). Charon’s appearance is much more uniform and bland. Altogether, Stern said that experts call this the Pluto-Charon dichotomy.

The final approach to Pluto is just the beginning of the story of New Horizons' primary targets. The press conference illustration explains near-term plans. (Illust. Credit: NASA/New Horizons)
The present approach at 60 million miles to Pluto is just the beginning of the story of New Horizons’ study of the primary targets. This press conference illustration explains near-term plans. (Illust. Credit: NASA/New Horizons)

Dr. Stern near the end of the press conference restated that this is truly “my meet Pluto moment.” New Horizons is like a plane on its final approach to touchdown but New Horizons cannot slow down. There are no retro-rockets, no propulsion onboard that can slow down the probe on its trek to escape the gravity of the Sun. The probe will join the Pioneer and Voyager space probes as the only Human-made objects to leave the Solar System. With its final approach, with every day, Pluto and Charon closes in as Dr. Stern and Dr. Weaver explained, Pluto’s image will fill the full breadth of the imaging detector. Details on its surface will be equivalent to high resolution images of New York’s Manhattan (figure, above) showing details such as the ponds in Central Park.

To continue following the latest release of images from New Horizons go to http://www.nasa.gov/newhorizons/lorri-gallery.

Comedian Stephen Colbert Talks with NASA’s John Grunsfeld About Curiosity Rover Landing


The Colbert Report Mon – Thurs 11:30pm / 10:30c
John Grunsfeld
www.colbertnation.com
Colbert Report Full Episodes Political Humor & Satire Blog Video Archive

NASA Chief Scientist John Grunsfeld took Stephen Colbert’s “Colbert Report” audience on a guided tour through the seven minutes of terror that the Curiosity rover will endure to land on Mars, and the two also discussed the possibility of life on Mars. Grunsfeld also shocked Colbert for a moment when he said the Curiosity rover won’t discover a thing … but then continued to say it will be the scientists who make the discoveries, and Grunsfeld predicted it will be an amazing 2 years for the MSL scientists during Curiosity’s prime mission.
Continue reading “Comedian Stephen Colbert Talks with NASA’s John Grunsfeld About Curiosity Rover Landing”