Figuring Out How To Breathe the Moon’s Regolith

Oxygen ranks right up there as one of the most important resources for use in space exploration.  Not only is it a critical component of rocket fuel, it’s also necessary for astronauts to breathe anywhere outside Earth’s atmosphere.  Availability of this abundant resource isn’t a problem – it’s widely available throughout the solar system.  One place it is particularly prevalent is lunar regolith, the thin material layer that makes up the moon’s surface.  The difficulty comes from one of the quirks of oxygen – it bonds to almost everything.

Approximately 45% of the weight of regolith is oxygen, but it is bonded to materials such as iron and titanium.  To utilize both the oxygen and the materials it’s bonded to they must be separated.  And a British company, with support from the European Space Agency, has begun testing a technique to judge its potential effectiveness on the moon.

Continue reading “Figuring Out How To Breathe the Moon’s Regolith”

The Moon has Resources, but Not Enough to Go Around

It’s no secret that in this decade, NASA and other space agencies will be taking us back to the Moon (to stay, this time!) The key to this plan is developing the necessary infrastructure to support a sustainable program of crewed exploration and research. The commercial space sector also hopes to create lunar tourism and lunar mining, extracting and selling some of the Moon’s vast resources on the open market.

Ah, but there’s a snag! According to an international team of scientists led by the Harvard & Smithsonian Center for Astrophysics (CfA), there may not be enough resources on the Moon to go around. Without some clear international policies and agreements in place to determine who can claim what and where, the Moon could quickly become overcrowded, overburdened, and stripped of its resources.

Continue reading “The Moon has Resources, but Not Enough to Go Around”

What Martian Settlers Need to Know About Soil Can Teach us How to Grow Better on Earth

When human beings start living in space for extended periods of time they will need to be as self-sufficient as possible. The same holds true for settlements built on the Moon, on Mars, and other bodies in the Solar System. To avoid being entirely dependent on resupply missions from Earth (which is costly and time-consuming) the inhabitants will need to harvest resources locally – aka. In-Situ Resource Utilization (ISRU).

This means they’ll have to procure their own sources of water, building materials, and grow their own food. While the ISS has allowed for all kinds of experiments involving hydroponics in space, little has been done to see how soil fares in microgravity (or lower gravity). To address this, Morgan Irons – Chief Science Officer of the Virginia-based startup Deep Space Ecology (DSE) – recently sent her Soil Health in Space experiment to the ISS.

Continue reading “What Martian Settlers Need to Know About Soil Can Teach us How to Grow Better on Earth”

NASA Will Pay You to Retrieve Regolith and Rocks from the Moon

As part of Project Artemis, NASA intends to send the first woman and the next man to the Moon by 2024, in what will be the first crewed mission to the lunar since the Apollo Era. By the end of the decade, NASA also hopes to have all the infrastructure in place to create a program for “sustainable lunar exploration,” which will include the Lunar Gateway (a habitat in orbit) and the Artemis Base Camp (a habitat on the surface).

Part of this commitment entails the recovery and use of resources that are harvested locally, including regolith to create building materials and ice to create everything from drinking water to rocket fuel. To this end, NASA has asked its commercial partners to collect samples of lunar soil or rocks as part of a proof-of-concept demonstration of how they will scout and harvest natural resources and conduct commercial operations on the Moon.

Continue reading “NASA Will Pay You to Retrieve Regolith and Rocks from the Moon”

Practical Ideas for Farming on the Moon and Mars

When the International Space Station (ISS) runs low on basic supplies – like food, water, and other necessities – they can be resupplied from Earth in a matter of hours. But when astronauts go the Moon for extended periods of time in the coming years, resupply missions will take much longer to get there. The same holds true for Mars, which can take months to get there while also being far more expensive.

It’s little wonder then why NASA and other space agencies are looking to develop methods and technologies that will ensure that their astronauts have a degree of self-sufficiency. According to NASA-supported research conducted by Daniel Tompkins of Grow Mars and Anthony Muscatello (formerly of the NASA Kennedy Space Center), ISRU methods will benefit immensely from some input from nature.

Continue reading “Practical Ideas for Farming on the Moon and Mars”

Mapping Out the Water on the Moon

In 2009, NASA launched the Lunar Reconnaissance Orbiter (LRO), the first mission to be sent by the US to the Moon in over a decade. Once there, the LRO conducted observations that led to some profound discoveries. For instance, in a series of permanently-shaded craters around the Moon’s South Pole-Aitken Basin, the probe confirmed the existence of abundant water ice.

Based on the temperature data obtained by the LRO of the Moon’s southern polar region, the ESA recently released a map of lunar water ice (see animation below) that will be accessible to future missions. This includes the ESA’s Package for Resource Observation and in-Situ Prospecting for Exploration, Commercial exploitation and Transportation (PROSPECT), which will be flown to the Moon by Russia’s Luna-27 lander in 2025.

Continue reading “Mapping Out the Water on the Moon”

This is What Moondust Looks Like When You Remove All the Oxygen. A Pile of Metal

The Moon has abundant oxygen and minerals, things that are indispensable to any space-faring civilization. The problem is they’re locked up together in the regolith. Separating the two will provide a wealth of critical resources, but separating them is a knotty problem.

Continue reading “This is What Moondust Looks Like When You Remove All the Oxygen. A Pile of Metal”

Robotic asteroid mining spacecraft wins a grant from NASA

Back in April, NASA once again put out the call for proposals for the next generation of robotic explorers and missions. As part of the NASA Innovative Advanced Concepts (NIAC) Program, this consisted of researchers, scientists, and entrepreneurs coming together to submit early studies of new concepts that could one-day help advance NASA’s space exploration goals.

One concept that was selected for Phase III of development was a breakthrough mission and flight system called Mini Bee. This small, robotic mining craft was designed by the Trans Astronautica (TransAstra) Corporation to assist with deep-space missions. It is hoped that by leveraging this flight system architecture, the Mini-bee will enable the full-scale industrialization of space as well as human settlement.

Continue reading “Robotic asteroid mining spacecraft wins a grant from NASA”

Lunar Outpost Shows off their New Rover that will Crawl the Moon, Searching for Resources

The space technology start-up Lunar Outpost has unveiled their Lunar Prospector rover, which is designed to explore the Moon for resources. Image: Lunar Outpost

Space technology company Lunar Outpost has unveiled their new Lunar Prospector rover that will explore the surface of the Moon to search for and map resources. The Lunar Prospector is designed to drill for and analyze sub-surface samples. The first of the smallish robots was recently demonstrated on simulated Lunar regolith at the Colorado School of Mines.
Continue reading “Lunar Outpost Shows off their New Rover that will Crawl the Moon, Searching for Resources”

NASA Invests In Radical Game-Changing Concepts For Exploration

Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.

This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.

Continue reading “NASA Invests In Radical Game-Changing Concepts For Exploration”