Did A Supernova Shape Our Solar System?


Away in space some 4.57 billion years ago, in a galaxy yet to be called the Milky Way, a hydrogen molecular cloud collapsed. From it was born a G-type main sequence star and around it swirled a solar nebula which eventually gelled into a solar system. But just what caused the collapse of the molecular cloud? Astronomers have theorized it may have been triggered by a nearby supernova event… And now new computer modeling confirms that our Solar System was born from the ashes a dead star.

While this may seem like a cold case file, there are still some very active clues – one of which is the study of isoptopes contained within the structure of meteorites. As we are well aware, many meteorites could very well be bits of our primordial solar nebula, left virtually untouched since they formed. This means their isotopic signature could spell out the conditions that existed within the molecular cloud at the time of its collapse. One strong factor in this composition is the amount of aluminium-26 – an element with a radioactive half-life of 700,000 years. In effect, this means it only takes a relatively minor period of time for the ratio between Al-26 and Al-24 to change.

“The time-scale for the formation events of our Solar System can be derived from the decay products of radioactive elements found in meteorites. Short lived radionuclides (SLRs) such as 26Al , 41Ca, 53Mn and 60Fe can be employed as high-precision and high-resolution chronometers due to their short half-lives.” says M. Gritschneder (et al). “These SLRs are found in a wide variety of Solar System materials, including calcium-aluminium-rich inclusions (CAIs) in primitive chondrites.”

However, it would seem that a class of carbonaceous chondrite meteorites known CV-chondrites, have a bit more than their fair share of Al-26 in their structure. Is it the smoking gun of an event which may have enriched the cloud that formed it? Isotope measurements are also indicative of time – and here we have two examples of meteorites which formed within 20,000 years of each other – yet are significantly different. What could have caused the abundance of Al-26 and caused fast formation?

“The general picture we adopt here is that a certain amount of Al-26 is injected in the nascent solar nebula and then gets incorporated into the earliest formed CAIs as soon as the temperature drops below the condensation temperature of CAI minerals. Therefore, the CAIs found in chondrites represent the first known solid objects that crystalized within our Solar System and can be used as an anchor point to determine the formation time-scale of our Solar System.” explains Gritschneder. “The extremely small time-span together with the highly homogeneous mixing of isotopes poses a severe challenge for theoretical models on the formation of our Solar System. Various theoretical scenarios for the formation of the Solar System have been discussed. Shortly after the discovery of SLRs, it was proposed that they were injected by a nearby massive star. This can happen either via a supernova explosion or by the strong winds of a Wolf-Rayet star.”

While these two theories are great, only one problem remains… Distinguishing the difference between the two events. So Matthias Gritschneder of Peking University in Beijing and his colleagues set to work designing a computer simulation. Biased towards the supernova event, the model demonstrates what happens when a shockwave encounters a molecular cloud. The results are an appropriate proportion of Al-26 – and a resultant solar system formation.

“After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment.” says Gritschneder. “We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20 kyr. We show that a cold clump at a distance of 5 pc can be sufficiently enriched in Al-26 and triggered into collapse fast enough – within 18 kyr after encountering the supernova shock – for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.”

While there are still other isotope ratios yet to be explained and further modeling done, it’s a step toward the future understanding of how solar systems form.

Original Story Source: MIT Technology Review News Release. For Further Reading: The Supernova Triggered Formation And Enrichment Of Our Solar System.

Ultraluminous Gamma Ray Burst 080607 – A “Monster in the Dark”

Shedding Light on Dark Gamma Ray Bursts


Gamma Ray Bursts (GRBs) are among the most energetic phenomena astronomers regularly observe. These events are triggered by massive explosions and a large amount of the energy if focused into narrow beams that sweep across the universe. These beams are so tightly concentrated that they can be seen across the visible universe and allow astronomers to probe the universe’s history. If such an event happened in our galaxy and we stood in the path of the beam, the effects would be pronounced and may lead to large extinctions. Yet one of the most energetic GRBs on record (GRB 080607) was shrouded in cloud of gas and dust dimming the blast by a factor of 20 – 200, depending on the wavelength.  Despite this strong veil, the GRB was still bright enough to be detected by small optical telescopes for over an hour. So what can this hidden monster tell astronomers about ancient galaxies and GRBs in general?

GRB 080607 was discovered on June 6, 2008 by the Swift satellite. Since GRBs are short lived events, searches for them are automated and upon detection, the Swift satellite immediately oriented itself towards the source. Other GRB hunting satellites quickly joined in and ground based observatories, including ROTSE-III and Keck made observations as well. This large collection of instruments allowed astronomers, led by D. A. Perley of UC Berkley, to develop a strong understanding of not just the GRB, but also the obscuring gas. Given that the host galaxy lies at a distance of over 12 billion light years, this has provided a unique probe into the nature of the environment of such distant galaxies.

One of the most surprising features was unusually strong absorption near 2175 °A. Although such absorption has been noticed in other galaxies, it has been rare in galaxies at such large cosmological distances. In the local universe, this feature seems to be most common in dynamically stable galaxies but tends to be “absent in more disturbed locations such as the SMC, nearby starburst galaxies” as well as some regions of the Milky Way which more turbulence is present. The team uses this feature to imply that the host galaxy was stable as well. Although this feature is familiar in nearby galaxies, observing it in this case makes it the furthest known example of this phenomenon. The precise cause of this feature is not yet known, although other studies have indicated “polycyclic aromatic hydrocarbons and graphite” are possible suspects.

Earlier studies of this event have shown other novel spectral features. A paper by Sheffer et al. notes that the spectrum also revealed molecular hydrogen. Again, such a feature is common in the local universe and many other galaxies, but never before has such an observation been made linked to a galaxy in which a GRB has occurred. Molecular hydrogen (as well as other molecular compounds) become disassociated at high temperatures like the ones in galaxies containing large amounts of star formation that would produce regions with large stars capable of triggering GRBs. With observations of one molecule in hand, this lead Sheffer’s team to suspect that there might be large amounts of other molecules, such as carbon monoxide (CO). This too was detected making yet another first for the odd environment of a GRB host.

This unusual environment may help to explain a class of GRBs known as “subluminous optical bursts” or “dark bursts” in which the optical component of the burst (especially the afterglow) is less bright than would be predicted by comparison to more traditional GRBs.


Monster in the Dark: The Ultra Luminous GRB 080706 and its Dusty Environment

The Discovery of Vibrationally-Excited H2 In the Molecular Cloud Near GRB 080706


Local Interstellar Gas Mapped in 3-D

Astronomers have created a new 3D map of the interstellar gas in the local area around our Sun. “Local” is a relative term, as the map extends to an area of 300 parsecs and provides new absorption measurements towards more than 1800 stars. The group of astronomers, from the US and France, were able to characterize the properties of the interstellar gas within each sight line. The new map will allow astronomers to better understand the interplay between the evolution of stars and their exchange of matter with the ambient interstellar medium.

The local area around our Sun has been studied with many surveys at various wavelengths, but the whole picture is still far from being either complete or fully understood. Our sun resides in a “cavity” a region of very low-density neutral gas, known as the Local Cavity. Theories of the general interstellar medium require that these large rarefied cavities exist, and astronomers believe the cavities were formed by the combined action of energetic supernova events and the outflowing winds of clusters of hot and young stars. The history of our Local Cavity is still speculative, but astronomers think it was created about 15 million years ago by a series of supernova outbursts, with the last re-heating happening about 3 million years ago.

The team gathered their data primarily from the European Southern Observatory in Chile, and combined it with previously published results. The map (shown above) shows the sodium map of the interstellar gas density within 300 parsecs. The white area surrounding the Sun (at the center of the map) corresponds to the Local Cavity. It is about 80 parsecs in radius in most directions and is surrounded by a highly fragmented “wall” of dense neutral gas. The various gaps in the wall are “interstellar tunnels” and represent rarefied pathways into other surrounding interstellar cavities. Maps of the distribution of calcium have never been made before, and they reveal that the Local Cavity contains numerous filamentary structures of partially ionized gas that appear to form in a honeycomb-like pattern of small interstellar cells.

Source: Astronomy and Astrophysics