NASA Simulation Shows How Europa’s “Fossil Ocean” Rises to the Surface Over Time

Based on new evidence from Jupiter's moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon's global liquid ocean and reach the frozen surface where they are bombarded with sulfur from volcanoes on Jupiter's innermost large moon Io. The new findings propose answers to questions that have been debated since the days of NASA's Voyager and Galileo missions. This illustration of Europa (foreground), Jupiter (right) and Io (middle) is an artist's concept. Credit: NASA/JPL-Caltech

In the 1970s, the Jupiter system was explored by a succession of robotic missions, beginning with the Pioneer 10 and 11 missions in 1972/73 and the Voyager 1 and 2 missions in 1979. In addition to other scientific objectives, these missions also captured images of Europa’s icy surface features, which gave rise to the theory that the moon had an interior ocean that could possibly harbor life.

Since then, astronomers have also found indications that there are regular exchanges between this interior ocean and the surface, which includes evidence of plume activity captured by the Hubble Space Telescope. And recently, a team of NASA scientists studied the strange features on Europa’s surface to create models that show how the interior ocean exchanges material with the surface over time.

The study, which recently appeared in the the Geophysical Research Letters under the title “Band Formation and Ocean-Surface Interaction on Europa and Ganymede“, was conducted by Samuel M. Howell and Robert T. Pappalardo – two researchers from the NASA Jet Propulsion Laboratory. For their study, the team examined both Ganymede and Europa to see what the moons surface features indicated about how they changed over time.

Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech

Using the same two-dimensional numerical models that scientists have used to solve mysteries about motion in the Earth’s crust, the team focused on the linear features known as “bands” and “groove lanes” on Europa and Ganymede. The features have long been suspected to be tectonic in nature, where fresh deposits of ocean water have risen to the surface and become frozen over previously-deposited layers.

However, the connection between this band-forming processes and exchanges between the ocean and the surface has remained elusive until now. To address this, the team used their 2-D numerical models to simulate ice shell faulting and convection.Their simulations also produced a beautiful animation that tracked the movement of “fossil” ocean material, which rises from the depths, freezes into the base of the icy surface, and deforms it over time.

Whereas the white layer at the top is the surface crust of Europa, the colored band in the middle (orange and yellow) represents the stronger sections of the ice sheet. Over time, gravitational interactions with Jupiter cause the ice shell to deform, pulling the top layer of ice apart and creating faults in the upper ice. At the bottom is the softer ice (teal and blue), which begins to churn as the upper layers pull apart.

This causes water from Europa’s interior ocean, which is in contact with the softer lower layers of the icy shell (represented by white dots), to mix with the ice and slowly be transported to the surface. As they explain in their paper, the process where this “fossil” ocean material becomes trapped in Europa’s ice shell and slowly rises to the surface can take hundreds of thousands of years or more.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

As they state in their study:

“We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.”

In this respect, once this fossil material reaches the surface, it acts as a sort of geological record, showing how the ocean was millions of years ago and not as it is today. This is certainly significant when it comes to future missions to Europa, such as NASA’s Europa Clipper mission. This spacecraft, which is expected to launch sometime in the 2020s, will be the first to study Europa exclusively.

In addition to studying the composition of Europa’s surface (which will tell us more about the composition of the ocean), the spacecraft will be studying surface features for signs of current geological activity. On top of that, the mission intends to look for key compounds in the surface ice that would indicate the possible presence of life in the interior (i.e. biosignatures).

Artist’s impression of a hypothetical ocean cryobot (a robot capable of penetrating water ice) in Europa. Credit: NASA

If what this latest study indicates is true, then the ice and compounds the Europa Clipper will be examining will essentially be “fossils” from hundreds of thousands or even millions of years ago. In short, any biomarkers the spacecraft detects – i.e. signs of potential life – will essentially be dated. However, this need not deter us from sending missions to Europa, for even evidence of past life would be groundbreaking, and a good indication that life still exists there today.

If anything, it makes the case for a lander that can explore Europa’s plumes, or perhaps even a Europa submarine (cryobot), all the more necessary! If there is life beneath Europa’s icy surface, we are determined to find it – provided we don’t contaminate it in the process!

Further Reading: NASA, Geophysical Research Letters

New Research Raises Hopes for Finding Life on Mars, Pluto and Icy Moons

Artist's impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

Since the 1970s, when the Voyager probes captured images of Europa’s icy surface, scientists have suspected that life could exist in interior oceans of moons in the outer Solar System. Since then, other evidence has emerged that has bolstered this theory, ranging from icy plumes on Europa and Enceladus, interior models of hydrothermal activity, and even the groundbreaking discovery of complex organic molecules in Enceladus’ plumes.

However, in some locations in the outer Solar System, conditions are very cold and water is only able to exist in liquid form because of the presence of toxic antifreeze chemicals. However, according to a new study by an international team of researchers, it is possible that bacteria could survive in these briny environments. This is good news for those hoping to find evidence of life in extreme environments of the Solar System.

The study which details their findings, titled “Enhanced Microbial Survivability in Subzero Brines“, recently appeared in the scientific journal Astrobiology. The study was conducted by Jacob Heinz from the Center of Astronomy and Astrophysics at the Technical University of Berlin (TUB), and included members from Tufts University, Imperial College London, and Washington State University.

Based on new evidence from Jupiter’s moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface. Credit: NASA/JPL-Caltech

Basically, on bodies like Ceres, Callisto, Triton, and Pluto – which are either far from the Sun or do not have interior heating mechanisms – interior oceans are believed to exist because of the presence of certain chemicals and salts (such as ammonia). These “antifreeze” compounds ensure that their oceans have lower freezing points, but create an environment that would be too cold and toxic to life as we know it.

For the sake of their study, the team sought to determine if microbes could indeed survive in these environments by conducting tests with Planococcus halocryophilus, a bacteria found in the Arctic permafrost. They then subjected this bacteria to solutions of sodium, magnesium and calcium chloride as well as perchlorate, a chemical compound that was found by the Phoenix lander on Mars.

They then subjected the solutions to temperatures ranging from +25°C to -30°C through multiple freeze and thaw cycles. What they found was that the bacteria’s survival rates depended on the solution and temperatures involved. For instance, bacteria suspended in chloride-containing (saline) samples had better chances of survival compared to those in perchlorate-containing samples – though survival rates increased the more the temperatures were lowered.

For instance, the team found that bacteria in a sodium chloride (NaCl) solution died within two weeks at room temperature. But when temperatures were lowered to 4 °C (39 °F), survivability began to increase and almost all the bacteria survived by the time temperatures reached -15 °C (5 °F). Meanwhile, bacteria in the magnesium and calcium-chloride solutions had high survival rates at –30 °C (-22 °F).

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

The results also varied for the three saline solvents depending on the temperature. Bacteria in calcium chloride (CaCl2) had significantly lower survival rates than those in sodium chloride (NaCl) and magnesium chloride (MgCl2)between 4 and 25 °C (39 and 77 °F), but lower temperatures boosted survival in all three.  The survival rates in perchlorate solution were far lower than in other solutions.

However, this was generally in solutions where perchlorate constituted 50% of the mass of the total solution (which was necessary for the water to remain liquid at lower temperatures), which would be significantly toxic. At concentrations of 10%, bacteria was still able to grow. This is semi-good news for Mars, where the soil contains less than one weight percent of perchlorate.

However, Heinz also pointed out that salt concentrations in soil are different than those in a solution. Still, this could be still be good news where Mars is concerned, since temperatures and precipitation levels there are very similar to parts of Earth – the Atacama Desert and parts of Antarctica. The fact that bacteria have can survive such environments on Earth indicates they could survive on Mars too.

In general, the research indicated that colder temperatures boost microbial survivability, but this depends on the type of microbe and the composition of the chemical solution. As Heinz told Astrobiology Magazine:

“[A]ll reactions, including those that kill cells, are slower at lower temperatures, but bacterial survivability didn’t increase much at lower temperatures in the perchlorate solution, whereas lower temperatures in calcium chloride solutions yielded a marked increase in survivability.”

This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. Credit: NASA/JPL

The team also found that bacteria did better in saltier solutions when it came to freezing and thawing cycles. In the end, the results indicate that survivability all comes down to a careful balance. Whereas lower concentrations of chemical salts meant that bacteria could survive and even grow, the temperatures at which water would remain in a liquid state would be reduced. It also indicated that salty solutions improve bacteria survival rates when it comes to freezing and thawing cycles.

Of course, the team emphasized that just because bacteria can subsist in certain conditions doesn’t mean they will thrive there. As Theresa Fisher, a PhD student at Arizona State University’s School of Earth and Space Exploration and a co-author on the study, explained:

“Survival versus growth is a really important distinction, but life still manages to surprise us. Some bacteria can not only survive in low temperatures, but require them to metabolize and thrive. We should try to be unbiased in assuming what’s necessary for an organism to thrive, not just survive.”  

As such, Heinz and his colleagues are currently working on another study to determine how different concentrations of salts across different temperatures affect bacterial propagation. In the meantime, this study and other like it are able to provide some unique insight into the possibilities for extraterrestrial life by placing constraints on the kinds of conditions that they can survive and grow in.

These studies also allow help when it comes to the search for extraterrestrial life, since knowing where life can exist allows us to focus our search efforts. In the coming years, missions to Europa, Enceladus, Titan and other locations in the Solar System will be looking for biosignatures that indicate the presence of life on or within these bodies. Knowing that life can survive in cold, briny environments opens up additional possibilities.

Further Reading: Astrobiology Magazine, Astrobiology

Scientists Find that Earth Bacteria Could Thrive on Enceladus

Scientists recently determined that a certain strain of Earth bacteria could thrive under conditions found on Enceladus. Credit: NASA/JPL/Space Science Institute

For decades, ever since the Pioneer and Voyager missions passed through the outer Solar System, scientists have speculated that life might exist within icy bodies like Jupiter’s moon Europa. However, thanks the Cassini mission, scientists now believe that other moons in the outer Solar System – such as Saturn’s moon Enceladus – could possibly harbor life as well.

For instance, Cassini observed plume activity coming from Enceladus’ southern polar region that indicated the presence of hydrothermal activity inside. What’s more, these plumes contained organic molecules and hydrated minerals, which are potential indications of life. To see if life could thrive inside this moon, a team of scientists conducted a test where strains of Earth bacteria were subjected to conditions similar to what is found inside Enceladus.

The study which details their findings recently appeared in the journal Nature Communications under the title “Biological methane production under putative Enceladus-like conditions“. The study was led by Ruth-Sophie Taubner from the University of Vienna, and included members from the Johannes Kepler University Linz, Ecotechnology Austria, the University of Bremen, and the University of Hamburg.

Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Credit: NASA/JPL

For the sake of their study, the team chose to work with three strains of methanogenic archaea known as methanothermococcus okinawensis. This type of microorganism thrives in low-oxygen environments and consumes chemical products known to exist on Enceladus – such as methane (CH4), carbon dioxide (CO2 ) and molecular hydrogen (H2) – and emit methane as a metabolic byproduct. As they state:

“To investigate growth of methanogens under Enceladus-like conditions, three thermophilic and methanogenic strains, Methanothermococcus okinawensis (65 °C), Methanothermobacter marburgensis (65 °C), and Methanococcus villosus (80 °C), all able to fix carbon and gain energy through the reduction of CO2 with H2 to form CH4, were investigated regarding growth and biological CH4 production under different headspace gas compositions…”

These strains were selected because of their ability to grow in a temperature range that is characteristic of the vicinity around hydrothermal vents, in a chemically defined medium, and at low partial pressures of molecular hydrogen. This is consistent with what has been observed in Enceladus’ plumes and what is believed to exist within the moon’s interior.

These types of archaea can still be found on Earth today, lingering in deep-see fissures and around hydrothermal vents. In particular, the strain of M. okinawensis has been determined to exist in only one location around the deep-sea hydrothermal vent field at Iheya Ridge in the Okinawa Trough near Japan. Since this vent is located at a depth of 972 m (3189 ft) below sea level, this suggests that this strain has a tolerance toward high pressure.

Hydrothermal vents on Earth’s ocean floor. Credit: NOAA

For many years, scientists have suspected that Earth’s hydrothermal vents played a vital role in the emergence of life, and that similar vents could exist within the interior of moons like Europa, Ganymede, Titan, Enceladus, and other bodies in the outer Solar System. As a result, the research team believed that methanogenic archaea could also exist within these bodies.

After subjecting the strains to Enceladus-like temperature, pressure and chemical conditions in a laboratory environment, they found that one of the three strains was able to flourish and produce methane. The strain even managed to survive after the team introduced harsh chemicals that are present on Enceladus, and which are known to inhibit the growth of microbes. As they conclude in their study:

“In this study, we show that the methanogenic strain M. okinawensis is able to propagate and/or to produce CH4 under putative Enceladus-like conditions. M. okinawensis was cultivated under high-pressure (up to 50 bar) conditions in defined growth medium and gas phase, including several potential inhibitors that were detected in Enceladus’ plume.”

From this, they determined that some of the methane found in Enceladus’ plumes were likely produced by the presence of methanogenic microbes. As Simon Rittmann, a microbiologist at the University of Vienna and lead author of the study, explained in an interview with The Verge. “It’s likely this organism could be living on other planetary bodies,” he said. “And it could be really interesting to investigate in future missions.”

Artist impression of an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

In the coming decades, NASA and other space agencies plan to send multiple mission to the Jupiter and Saturn systems to investigate their “ocean worlds” for potential signs of life. In the case of Enceladus, this will most likely involve a lander that will set down around the southern polar region and collect samples from the surface to determine the presence of biosignatures.

Alternately, an orbiter mission may be developed that will fly through Enceladus’ plumes and collect bioreadings directly from the moon’s ejecta, thus picking up where Cassini left off. Whatever form the mission takes, the discoveries are expected to be a major breakthrough. At long last, we may finally have proof that Earth is not the only place in the Solar System where live can exist.

Be sure to check out John Michael Godier’s video titled “Encedalus and the Conditions for Life” as well:

Further Reading: The Verge, Nature

Icy Worlds Like Europa and Enceladus Might Actually be too Soft to Land On

The moons of Europa and Enceladus, as imaged by the Galileo and Cassini spacecraft. Credit: NASA/ESA/JPL-Caltech/SETI Institute

Some truly interesting and ambitious missions have been proposed by NASA and other space agencies for the coming decades. Of these, perhaps the most ambitious include missions to explore the “Ocean Worlds” of the Solar System. Within these bodies, which include Jupiter’s moon Europa and Saturn’s moon Enceladus, scientists have theorized that life could exist in warm-water interior oceans.

By the 2020s and 2030s, robotic missions are expected to reach these worlds and set down on them, sampling ice and exploring their plumes for signs of biomarkers. But according to a new study by an international team of scientists, the surfaces of these moons may have extremely low-density surfaces. In other words, the surface ice of Europa and Enceladus could be too soft to land on.

The study, titled “Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations“, was recently published in the scientific journal Icarus. The study was led by Robert M.Nelson, the Senior Scientist at the Planetary Science Institute (PSI) and included members from NASA’s Jet Propulsion Laboratory, the California Polytechnic State University at Pomona, and multiple universities.

Artist’s rendering of a possible Europa Lander mission, which would explore the surface of the icy moon in the coming decades. Credit: NASA/JPL-Caltech

For the sake of their study, the team sought to explain the unusual negative polarization behavior at low phase angles that has been observed for decades when studying atmosphereless bodies. This  polarization behavior is thought to be the result of extremely fine-grained bright particles. To simulate these surfaces, the team used thirteen samples of aluminum oxide powder (Al²O³).

Aluminum oxide is considered to be an excellent analog for regolith found on high aldebo Airless Solar System Bodies (ASSB), which include Europa and Encedalus as well as eucritic asteroids like 44 Nysa and 64 Angelina.  The team then subjected these samples to photopolarimetric examinations using the goniometric photopolarimeter at Mt. San Antonio College.

What they found was that the bright grains that make up the surfaces of Europa and Enceladus would measure about a fraction of a micron and have a void space of about 95%. This corresponds to material that is less dense than freshly-fallen snow, which would seem to indicate that these moon’s have very soft surfaces.  Naturally, this does not bode well for any missions that would attempt to set down on Europa or Enceladus’ surface.

But as Nelson explained in PSI press release, this is not necessarily bad news, and such fears have been raised before:

“Of course, before the landing of the Luna 2 robotic spacecraft in 1959, there was concern that the Moon might be covered in low density dust into which any future astronauts might sink. However, we must keep in mind that remote visible-wavelength observations of objects like Europa are only probing the outermost microns of the surface.”

Enceladus in all its glory. NASA has announced that Enceladus, Saturn’s icy moon, has hydrogen in its oceans. Image: NASA/JPL/Space Science Institute

So while Europa and Enceladus may have surfaces with a layer of low-density ice particles, it does not rule out that their outer shells are solid. In the end, landers may be forced to contend with nothing more than a thin sheet of snow when setting down on these worlds. What’s more, if these particles are the result of plume activity or action between the interior and the surface, they could hold the very biomarkers the probes are looking for.

Of course, further studies are needed before any robotic landers are sent to bodies like Europa and Enceladus. In the coming years, the James Webb Space Telescope will be conducting studies of these and other moons during its first five months in service. This will include producing maps of the Galilean Moons, revealing things about their thermal and atmospheric structure, and searching their surfaces for signs of plumes.

The data the JWST obtains with its advanced suite of spectroscopic and near-infrared instruments will also provide additional constraints on their surface conditions. And with other missions like the ESA’s proposed Europa Clipper conducting flybys of these moons, there’s no shortage to what we can learn from them.

Beyond being significant to any future missions to ASSBs, the results of this study are also likely to be of value when it comes to the field of terrestrial geo-engineering. Essentially, scientists have suggested that anthropogenic climate change could be mitigated by introducing aluminum oxide into the atmosphere, thus offsetting the radiation absorbed by greenhouse gas emissions in the upper atmosphere. By examining the properties of these grains, this study could help inform future attempts to mitigate climate change.

This study was made possible thanks in part to a contract provided by NASA’s Jet Propulsion Laboratory to the PSI. This contract was issued in support of the NASA Cassini Saturn Orbiter Visual and Infrared Mapping Spectrometer instrument team.

Further Reading: Planetary Science Institute, Icarus

There Could be Hundreds More Icy Worlds with Life Than on Rocky Planets Out There in the Galaxy

The moons of Europa and Enceladus, as imaged by the Galileo and Cassini spacecraft. Credit: NASA/ESA/JPL-Caltech/SETI Institute

In the hunt for extra-terrestrial life, scientists tend to take what is known as the “low-hanging fruit approach”. This consists of looking for conditions similar to what we experience here on Earth, which include at oxygen, organic molecules, and plenty of liquid water. Interestingly enough, some of the places where these ingredients are present in abundance include the interiors of icy moons like Europa, Ganymede, Enceladus and Titan.

Whereas there is only one terrestrial planet in our Solar System that is capable of supporting life (Earth), there are multiple “Ocean Worlds” like these moons. Taking this a step further, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that showed how potentially-habitable icy moons with interior oceans are far more likely than terrestrial planets in the Universe.

The study, titled “Subsurface Exolife“, was performed by Manasvi Lingam and Abraham Loeb of the Harvard Smithsonain Center for Astrophysics (CfA) and the Institute for Theory and Computation (ITC) at Harvard University. For the sake of their study, the authors consider all that what defines a circumstellar habitable zone (aka. “Goldilocks Zone“) and likelihood of there being life inside moons with interior oceans.

Cutaway showing the interior of Saturn’s moon Enceladus. Credit: ESA

To begin, Lingam and Loeb address the tendency to confuse habitable zones (HZs) with habitability, or to treat the two concepts as interchangeable. For instance, planets that are located within an HZ are not necessarily capable of supporting life – in this respect, Mars and Venus are perfect examples. Whereas Mars is too cold and it’s atmosphere too thin to support life, Venus suffered a runaway greenhouse effect that caused it to become a hot, hellish place.

On the other hand, bodies that are located beyond HZs have been found to be capable of having liquid water and the necessary ingredients to give rise to life. In this case, the moons of Europa, Ganymede, Enceladus, Dione, Titan, and several others serve as perfect examples. Thanks to the prevalence of water and geothermal heating caused by tidal forces, these moons all have interior oceans that could very well support life.

As Lingam, a post-doctoral researcher at the ITC and CfA and the lead author on the study, told Universe Today via email:

“The conventional notion of planetary habitability is the habitable zone (HZ), namely the concept that the “planet” must be situated at the right distance from the star such that it may be capable of having liquid water on its surface. However, this definition assumes that life is: (a) surface-based, (b) on a planet orbiting a star, and (c) based on liquid water (as the solvent) and carbon compounds. In contrast, our work relaxes assumptions (a) and (b), although we still retain (c).”

As such, Lingam and Loeb widen their consideration of habitability to include worlds that could have subsurface biospheres. Such environments go beyond icy moons such as Europa and Enceladus and could include many other types deep subterranean environments. On top of that, it has also been speculated that life could exist in Titan’s methane lakes (i.e. methanogenic organisms). However, Lingam and Loeb chose to focus on icy moons instead.

A “true color” image of the surface of Jupiter’s moon Europa as seen by the Galileo spacecraft. Image credit: NASA/JPL-Caltech/SETI Institute

“Even though we consider life in subsurface oceans under ice/rock envelopes, life could also exist in hydrated rocks (i.e. with water) beneath the surface; the latter is sometimes referred to as subterranean life,” said Lingam. “We did not delve into the second possibility since many of the conclusions (but not all of them) for subsurface oceans are also applicable to these worlds. Similarly, as noted above, we do not consider lifeforms based on exotic chemistries and solvents, since it is not easy to predict their properties.”

Ultimately, Lingam and Loeb chose to focus on worlds that would orbit stars and likely contain subsurface life humanity would be capable of recognizing. They then went about assessing the likelihood that such bodies are habitable, what advantages and challenges life will have to deal with in these environments, and the likelihood of such worlds existing beyond our Solar System (compared to potentially-habitable terrestrial planets).

For starters, “Ocean Worlds” have several advantages when it comes to supporting life. Within the Jovian system (Jupiter and its moons) radiation is a major problem, which is the result of charged particles becoming trapped in the gas giants powerful magnetic field. Between that and the moon’s tenuous atmospheres, life would have a very hard time surviving on the surface, but life dwelling beneath the ice would fare far better.

“One major advantage that icy worlds have is that the subsurface oceans are mostly sealed off from the surface,” said Lingam. “Hence, UV radiation and cosmic rays (energetic particles), which are typically detrimental to surface-based life in high doses, are unlikely to affect putative life in these subsurface oceans.”

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

“On the negative side,’ he continued, “the absence of sunlight as a plentiful energy source could lead to a biosphere that has far less organisms (per unit volume) than Earth. In addition, most organisms in these biospheres are likely to be microbial, and the probability of complex life evolving may be low compared to Earth. Another issue is the potential availability of nutrients (e.g. phosphorus) necessary for life; we suggest that these nutrients might be available only in lower concentrations than Earth on these worlds.”

In the end, Lingam and Loeb determined that a wide range of worlds with ice shells of moderate thickness may exist in a wide range of habitats throughout the cosmos. Based on how statistically likely such worlds are, they concluded that “Ocean Worlds” like Europa, Enceladus, and others like them are about 1000 times more common than rocky planets that exist within the HZs of stars.

These findings have some drastic implications for the search for extra-terrestrial and extra-solar life. It also has significant implications for how life may be distributed through the Universe. As Lingam summarized:

“We conclude that life on these worlds will undoubtedly face noteworthy challenges. However, on the other hand, there is no definitive factor that prevents life (especially microbial life) from evolving on these planets and moons. In terms of panspermia, we considered the possibility that a free-floating planet containing subsurface exolife could be temporarily “captured” by a star, and that it may perhaps seed other planets (orbiting that star) with life. As there are many variables involved, not all of them can be quantified accurately.”

Exogenesis
A new instrument called the Search for Extra-Terrestrial Genomes (STEG)
is being developed to find evidence of life on other worlds. Credit: NASA/Jenny Mottor

Professor Leob – the Frank B. Baird Jr. Professor of Science at Harvard University, the director of the ITC, and the study’s co-author – added that finding examples of this life presents its own share of challenges. As he told Universe Today via email:

“It is very difficult to detect sub-surface life remotely (from a large distance) using telescopes. One could search for excess heat but that can result from natural sources, such as volcanos. The most reliable way to find sub-surface life is to land on such a planet or moon and drill through the surface ice sheet. This is the approach contemplated for a future NASA mission to Europa in the solar system.”

Exploring the implications for panspermia further, Lingam and Loeb also considered what might happen if a planet like Earth were ever ejected from the Solar System. As they note in their study, previous research has indicated how planets with thick atmospheres or subsurface oceans could still support life while floating in interstellar space. As Loeb explained, they also considered what would happen if this ever happened with Earth someday:

“An interesting question is what would happen to the Earth if it was ejected from the solar system into cold space without being warmed by the Sun. We have found that the oceans would freeze down to a depth of 4.4 kilometers but pockets of liquid water would survive in the deepest regions of the Earth’s ocean, such as the Mariana Trench, and life could survive in these remaining sub-surface lakes. This implies that sub-surface life could be transferred between planetary systems.”

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

This study also serves as a reminder that as humanity explores more of the Solar System (largely for the sake of finding extra-terrestrial life) what we find also has implications in the hunt for life in the rest of the Universe. This is one of the benefits of the “low-hanging fruit” approach. What we don’t know is informed but what we do, and what we find helps inform our expectations of what else we might find.

And of course, it’s a very vast Universe out there. What we may find is likely to go far beyond what we are currently capable of recognizing!

Further Reading: arXiv

New Study Says Enceladus has had an Internal Ocean for Billions of Years

Cutaway showing the interior of Saturn's moon Enceladus. Credit: ESA

When the Cassini mission arrived in the Saturn system in 2004, it discovered something rather unexpected in Enceladus’ southern hemisphere. From hundreds of fissures located in the polar region, plumes of water and organic molecules were spotted periodically spewing forth. This was the first indication that Saturn’s moon may have an interior ocean caused by hydrothermal activity near the core-mantle boundary.

According to a new study based on Cassini data, which it obtained before diving into Saturn’s atmosphere on September 15th, this activity may have been going on for some time. In fact, the study team concluded that if the moon’s core is porous enough, it could have generated enough heat to maintain an interior ocean for billions of years. This study is the most encouraging indication yet that the interior of Enceladus could support life.

The study, titled “Powering prolonged hydrothermal activity inside Enceladus“, recently appeared in the journal Nature Astronomy. The study was led by Gaël Choblet, a researcher with the Planetary and Geodynamic Laboratory at the University of Nantes, and included members from NASA’s Jet Propulsion Laboratory, Charles University, and the Institute of Earth Sciences and the Geo- and Cosmochemistry Laboratory at the University of Heidelberg.

Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Credit: NASA/JPL

Prior to the Cassini mission’s many flybys of Enceladus, scientists believed this moon’s surface was composed of solid ice. It was only after noticing the plume activity that they came to realize that it had water jets that extended all the way down to a warm-water ocean in its interior. From the data obtained by Cassini, scientists were even able to make educated guesses of where this internal ocean lay.

All told, Enceladus is a relatively small moon, measuring some 500 km (311 mi) in diameter. Based on gravity measurements performed by Cassini, its interior ocean is believed to lie beneath an icy outer surface at depths of 20 to 25 km (12.4 to 15.5 mi). However, this surface ice thins to about 1 to 5 km (0.6 to 3.1 mi) over the southern polar region, where the jets of water and icy particles jet through fissures.

Based on the way Enceladus orbits Saturn with a certain wobble (aka. libration), scientists have been able to make estimates of the ocean’s depth, which they place at 26 to 31 km (16 to 19 mi). All of this surrounds a core which is believed to be composed of silicate minerals and metal, but which is also porous. Despite all these findings, the source of the interior heat has remained something of an open question.

This mechanism would have to be active when the moon formed billions of years ago and is still active today (as evidenced by the current plume activity). As Dr. Choblet explained in an ESA press statement:

“Where Enceladus gets the sustained power to remain active has always been a bit of mystery, but we’ve now considered in greater detail how the structure and composition of the moon’s rocky core could play a key role in generating the necessary energy.”

Gravity measurements by NASA’s Cassini spacecraft and Deep Space Network suggest that Saturn’s moon Enceladus, which has jets of water vapor and ice gushing from its south pole, also harbors a large interior ocean beneath an ice shell, as this illustration depicts. Credit: NASA/JPL-Caltech

For years, scientists have speculated that tidal forces caused by Saturn’s gravitational influence are responsible for Enceladus’ internal heating. The way Saturn pushes and pulls the moon as it follows an elliptical path around the planet is also believed to be what causes Enceladus’ icy shell to deform, causing the fissures around the southern polar region. These same mechanisms are believed to be what is responsible for Europa’s interior warm-water ocean.

However, the energy produced by tidal friction in the ice is too weak to counterbalance the heat loss seen from the ocean. At the rate Enceladus’ ocean is losing energy to space, the entire moon would freeze solid within 30 million years. Similarly, the natural decay of radioactive elements within the core (which has been suggested for other moons as well) is also about 100 times too weak to explain Enceladus interior and plume activity.

To address this, Dr. Choblet and his team conducted simulations of Enceladus’ core to determine what kind of conditions could allow for tidal heating over billions of years. As they state in their study:

“In absence of direct constraints on the mechanical properties of Enceladus’ core, we consider a wide range of parameters to characterize the rate of tidal friction and the efficiency of water transport by porous flow. The unconsolidated core of Enceladus can be viewed as a highly granular/fragmented material, in which tidal deformation is likely to be associated with intergranular friction during fragment rearrangements.”
Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface.Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

What they found was that in order for the Cassini observations to be borne out, Enceladus’ core would need to be made of unconsolidated, easily deformable, porous rock. This core could be easily permeated by liquid water, which would seep into the core and gradually heated through tidal friction between sliding rock fragments. Once this water was sufficiently heated, it would rise upwards because of temperature differences with its surroundings.

This process ultimately transfers heat to the interior ocean in narrow plumes which rise to the meet Enceladus’ icy shell. Once there, it causes the surface ice to melt and forming fissures through which jets reach  into space, spewing water, ice particles and hydrated minerals that replenish Saturn’s E-Ring. All of this is consistent with the observations made by Cassini, and is sustainable from a geophysical point of view.

In other words, this study is able to show that action in Enceladus’ core could produce the necessary heating to maintain a global ocean and produce plume activity. Since this action is a result of the core’s structure and tidal interaction with Saturn, it is perfectly logical that it has been taking place for billions of years. So beyond providing the first coherent explanation for Enceladus’ plume activity, this study is also a strong indication of habitability.

As scientists have come to understand, life takes a long time to get going. On Earth, it is estimated that the first microorganisms arose after 500 million years, and hydrothermal vents are believed to have played a key role in that process. It took another 2.5 billion years for the first multi-cellular life to evolve, and land-based plants and animals have only been around for the past 500 million years.

Knowing that moons like Enceladus – which has the necessary chemistry to support for life – has also had the necessary energy for billions of years is therefore very encouraging. One can only imagine what we will find once future missions begin inspecting its plumes more closely!

Further Reading: ESA, Nature Astronomy

Europa Lander Could Carry a Microphone and “Listen” to the Ice to Find Out What’s Underneath

Artist's rendering of a possible Europa Lander mission, which would explore the surface of the icy moon in the coming decades. Credit:: NASA/JPL-Caltech

Between the Europa Clipper and the proposed Europa Lander, NASA has made it clear that it intends to send a mission to this icy moon of Jupiter in the coming decade. Ever since the Voyager 1 and 2 probes conducted their historic flybys of the moon in 1973 and 1974 – which offered the first indications of a warm-water ocean in the moon’s interior – scientists have been eager to peak beneath the surface and see what is there.

Towards this end, NASA has issued a grant to a team of researchers from Arizona State University to build and test a specially-designed seismometer that the lander would use to listen to Europa’s interior. Known as the Seismometer for Exploring the Subsurface of Europa (SESE), this device will help scientists determine if the interior of Europa is conducive to life.

According to the profile for the Europa Lander, this microphone would be mounted to the robotic probe. Once it reached the surface of the moon, the seismometer would begin collecting information on Europa’s subsurface environment. This would include data on its natural tides and movements within the shell, which would determine the icy surface’s thickness.

Image of Europa’s ice shell, taken by the Galileo spacecraft, of fractured “chaos terrain”. Credit: NASA/JPL-Caltech

It would also determine if the surface has pockets of water – i.e. subsurface lakes – and see how often water rises to the surface. For some time, scientists have suspected that Europa’s “chaos terrain” would be the ideal place to search for evidence of life. These features, which are basically a jumbled mess of ridges, cracks, and plains, are believed to be spots where the subsurface ocean is interacting with the icy crust.

As such, any evidence of organic molecules or biological organisms would be easiest to find there. In addition, astronomers have also detected water plumes coming from Europa’s surface. These are also considered to be one of the best bets for finding evidence of life in the interior. But before they can be explored directly, determining where reservoirs of water reside beneath the ice and if they are connected to the interior ocean is paramount.

And this is where instruments like the SESE would come into play. Hongyu Yu is an exploration system engineer from ASU’s School of Earth and Space Exploration and the leader of the SESE team. As he stated in a recent article by ASU Now, “We want to hear what Europa has to tell us. And that means putting a sensitive ‘ear’ on Europa’s surface.”

While the idea of a Europa Lander is still in the concept-development stage, NASA is working to develop all the necessary components for such a mission. As such, they have provided the ASU team with a grant to develop and test their miniature seismometer, which measures no more than 10 cm (4 inches) on a side and could easily be fitted aboard a robotic lander.

Europa’s “Great Lake.” Scientists speculate many more exist throughout the shallow regions of the moon’s icy shell. Credit: Britney Schmidt/Dead Pixel FX/Univ. of Texas at Austin.

More importantly, their seismometer differs from conventional designs in that it does not rely on a mass-and-spring sensor. Such a design would be ill-suited for a mission to another body in our Solar System since it needs to be positioned upright, which requires that it be carefully planted and not disturbed. What’s more, the sensor needs to be placed within a complete vacuum to ensure accurate measurements.

By using a micro-electrical system with a liquid electrolyte for a sensor, Yu and his team have created a seismometer that can operate under a wider range of conditions. “Our design avoids all these problems,” he said. “This design has a high sensitivity to a wide range of vibrations, and it can operate at any angle to the surface. And if necessary, they can hit the ground hard on landing.”

As Lenore Dai – a chemical engineer and the director of the ASU’s School for Engineering of Matter, Transport and Energy – explained, the design also makes the SESE well suited for exploring extreme environments – like Europa’s icy surface. “We’re excited at the opportunity to develop electrolytes and polymers beyond their traditional temperature limits,” she said. “This project also exemplifies collaboration across disciplines.”

The SESE can also take a beating without compromising its sensor readings, which was tested when the team struck it with a sledgehammer and found that it still worked afterwards. According to seismologist Edward Garnero, who is also a member of the SESE team, this will come in handy. Landers typically have six to eight legs, he claims, which could be mated with seismometers to turn them into scientific instruments.

Artist’s concept of chloride salts bubbling up from Europa’s liquid ocean and reaching the frozen surface.  Credit: NASA/JPL-Caltech

Having this many sensors on the lander would give scientists the ability to combine data, allowing them to overcome the issue of variable seismic vibrations recorded by each. As such, ensuring that they are rugged is a must.

“Seismometers need to connect with the solid ground to operate most effectively. If each leg carries a seismometer, these could be pushed into the surface on landing, making good contact with the ground. We can also sort out high frequency signals from longer wavelength ones. For example, small meteorites hitting the surface not too far away would produce high frequency waves, and tides of gravitational tugs from Jupiter and Europa’s neighbor moons would make long, slow waves.”

Such a device could also prove crucial to missions other “ocean worlds” within the Solar System, which include Ceres, Ganymede, Callisto, Enceladus, Titan and others. On these bodies as well, it is believed that life could very well exist in warm-water oceans that lie beneath the surface. As such, a compact, rugged seismometer that is capable of working in extreme-temperature environments would be ideal for studying their interiors.

What’s more, missions of this kind would be able to reveal where the ice sheets on these bodies are thinnest, and hence where the interior oceans are most accessible. Once that’s done, NASA and other space agencies will know exactly where to send in the probe (or possibly the robotic submarine). Though we might have to wait a few decades on that one!

Further Reading: ASU Now

NASA’s Plans to Explore Europa and Other “Ocean Worlds”

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

Earlier this week, NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. Running from Monday to Wednesday – February 27th to March 1st – the purpose of this workshop was to present NASA’s plans for the future of space exploration to the international community. In the course of the many presentations, speeches and panel discussions, many interesting proposals were shared.

Among them were two presentations that outlined NASA’s plan for the exploration of Jupiter’s moon Europa and other icy moons. In the coming decades, NASA hopes to send probes to these moons to investigate the oceans that lie beneath theirs surfaces, which many believe could be home to extra-terrestrial life. With missions to the “ocean worlds” of the Solar System, we may finally come to discover life beyond Earth.

The first of the two meetings took place on the morning of Monday, Feb. 27th, and was titled “Exploration Pathways for Europa after initial In-Situ Analyses for Biosignatures“. In the course of the presentation, Kevin Peter Hand – the Deputy Chief Scientist for Solar System Exploration at NASA’s Jet Propulsion Laboratory – shared findings from a report prepared by the 2016 Europa Lander Science Definition Team.

Artist’s rendering of a potential future mission to land a robotic probe on the surface of Jupiter’s moon Europa. Credits: NASA/JPL-Caltech

This report was drafted by NASA’s Planetary Science Division (PSD) in response to a congressional directive to begin a pre-Phase A study to assess the scientific value and engineering design of a Europa lander mission. These studies, which are known as Science Definition Team (SDT) reports, are routinely conducted long before missions are mounted in order to gain an understanding of the types of challenges it will face, and what the payoffs will be.

In addition to being the co-chair of the Science Definition Team, Hand also served as head of the project science team, which included members from the JPL and the California Institute of Technology (Caltech). The report he and his colleagues prepared was finalized and issued to NASA on February 7th, 2017, and outlined several objectives for scientific study.

As was indicated during the course of the presentation, these objectives were threefold. The first would involve searching for biosignatures and signs of life through analyses of Europa’s surface and near-subsurface material. The second would be to conduct in-situ analyses to characterize the composition of non-ice near-subsurface material, and determine the proximity of liquid water and recently-erupted material near the lander’s location.

The third and final goal would be to characterize the surface and subsurface properties and what dynamic processes are responsible for shaping them, in support for future exploration missions. As Hand explained, these objectives are closely intertwined:

“Were biosignatures to be found in the surface material, direct access to, and exploration of, Europa’s ocean and liquid water environments would be a high priority goal for the astrobiological investigation of our Solar System. Europa’s ocean would harbor the potential for the study of an extant ecosystem, likely representing a second, independent origin of life in our own solar system. Subsequent exploration would require robotic vehicles and instrumentation capable of accessing the habitable liquid water regions in Europa to enable the study of the ecosystem and organisms.”

Artist’s impression of a hypothetical ocean cryobot (a robot capable of penetrating water ice) in Europa. Credit: NASA

In other words, if the lander mission detected signs of life within Europa’s ice sheet, and from material churned up from beneath by resurfacing events, then future missions – most likely involving robotic submarines – would definitely be mounted. The report also states that any finds that are indicative of life would mean that planetary protections would be a major requirement for any future mission, to avoid the possibility of contamination.

But of course, Hand also admitted that there is a chance the lander will find no signs of life. If so, Hand indicated that future missions would be tasked with gaining “a better understanding of the fundamental geological and geophysical process on Europa, and how they modulate exchange of material with Europa’s ocean.” On the other hand, he claimed that even a null-result (i.e. no signs of life anywhere) would still be a major scientific find.

Ever since the Voyager probes first detected possible signs of an interior ocean on Europa, scientists have dreamed of the day when a  mission might be possible to explore the interior of this mysterious moon. To be able to determine that life does not exist there could no less significant that finding life, in that both would help us learn more about life in our Solar System.

The Science Definition Team’s report will also be the subject of a townhall meeting at the 2017 Lunar and Planetary Science Conference (LPSC) – which will be taking place from March 20th to 24th in The Woodlands, Texas. The second event will be on April 23rd at the Astrobiology Science Conference (AbSciCon) held in Mesa, Arizona. Click here to read the full report.

Saturn’s moon Enceladus is another popular destination for proposed missions since it is believed to potentially host extra-terrestrial life. Credit: NASA/JPL/Space Science Institute

The second presentation, titled “Roadmaps to Ocean Worlds” took place later on Monday, Feb. 27th. This presentation was put on by members of the the Roadmaps to Ocean Worlds (ROW) team, which is chaired by Dr. Amandra Hendrix – a senior scientist at the Planetary Science Institute in Tuscon, Arizona – and Dr. Terry Hurford, a research assistant from NASA’s Science and Exploration Directorate (SED).

As a specialist in UV spectroscopy of planetary surfaces, Dr. Hendrix has collaborated with many NASA missions to explore icy bodies in the Solar System – including the Galileo and Cassini probes and the Lunar Reconnaissance Orbiter (LRO). Dr. Hurford, meanwhile, specializes in the geology and geophysics of icy satellites, as well as the effects orbital dynamics and tidal stresses have on their interior structures.

Founded in 2016 by NASA’s Outer Planets Assessment Group (OPAG), ROW was tasked with laying the groundwork for a mission that will explore “ocean worlds” in the search for life elsewhere in the Solar System. During the course of the presentation, Hendrix and Hurford laid out the findings from the ROW report, which was completed in January of 2017.

As they state in this report, “we define an ‘ocean world’ as a body with a current liquid ocean (not necessarily global). All bodies in our solar system that plausibly can have or are known to have an ocean will be considered as part of this document. The Earth is a well-studied ocean world that can be used as a reference (“ground truth”) and point of comparison.”

Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials. The image is centered on Ceres brightest spots at Occator crater. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

By this definition, bodies like Europa, Ganymede, Callisto, and Enceladus would all be viable targets for exploration. These worlds are all known to have subsurface oceans, and there has been compelling evidence in the past few decades that point towards the presence of organic molecules and prebiotic chemistry there as well. Triton, Pluto, Ceres and Dione are all mentioned as candidate ocean worlds based on what we know of them.

Titan also received special mention in the course of the presentation. In addition to having an interior ocean, it has even been ventured that extremophile methanogenic lifeforms could exist on its surface:

“Although Titan possesses a large subsurface ocean, it also has an abundant supply of a wide range of organic species and surface liquids, which are readily accessible and could harbor more exotic forms of life. Furthermore, Titan may have transient surface liquid water such as impact melt pools and fresh cryovolcanic flows in contact with both solid and liquid surface organics. These environments present unique and important locations for investigating prebiotic chemistry, and potentially, the first steps towards life.”

Ultimately, the ROW’s pursuit of life on “ocean worlds” consists of four main goals. These include identifying ocean worlds in the solar system, which would mean determining which of the worlds and candidate worlds would be well-suited to study. The second is to characterize the nature of these oceans, which would include determining the properties of the ice shell and liquid ocean, and what drives fluid motion in them.

Artist’s conception of the Titan Aerial Daughtercraft on Saturn’s moon Titan. Credit: NASA

The third sub-goal involves determining if these oceans have the necessary energy and prebiotic chemistry to support life. And the fourth and final goal would be to determine how life might exist in them – i.e. whether it takes the form of extremophile bacteria and tiny organisms, or more complex creatures. Hendrix and Hurford also covered the kind of technological advances that will be needed for such missions to happen.

Naturally, any such mission would require the development of power sources and energy storage systems that would be suitable for cryogenic environments. Autonomous systems for pinpoint landing and technologies for aerial or landed mobility would also be needed. Planetary protection technologies would be necessary to prevent contamination, and electronic/mechanical systems that can survive in an ocean world environment too,

While these presentations are merely proposals of what could happen in the coming decades, they are still exciting to hear about. If nothing else, they show how NASA and other space agencies are actively collaborating with scientific institutions around the world to push the boundaries of knowledge and exploration. And in the coming decades, they hope to make some substantial leaps.

If all goes well, and exploration missions to Europa and other icy moons are allowed to go forward, the benefits could be immeasurable. In addition to the possibility of finding life beyond Earth, we will come to learn a great deal about our Solar System, and no doubt learn something more about humanity’s place in the cosmos.

Further Reading: NASA, USRA, USRA (2)

Europa’s Venting Global Ocean May Be Easier To Reach Than We Thought

Artist's impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

Last week, on Tuesday, September 20th, NASA announced that they had made some interesting findings about Jupiter’s icy moon Europa. These were based on images taken by the Hubble Space Telescope, the details of which would be released on the following week. Needless to say, since then, the scientific community and general public have been waiting with baited breath.

Earlier today (September 26th) NASA put an end to the waiting and announced the Hubble findings during a NASA Live conference. According to the NASA panel, which was made up of members of the research team, this latest Europa-observing mission revealed evidence of plumes of saline water emanating from Europa’s surface. If true, this would mean that the moon’s subsurface ocean would be more accessible than previously thought.

Using Hubble’s Space Telescope Imaging Spectrograph (STIS) instrument, the team conducted observations of Jupiter and Europa in the ultra-violet spectrum over the course of 15 months. During that time, Europa passed in front of Jupiter (occulted the gas giant) on 10 separate occasions.

And on three of these occasions, the team saw what appeared to be plumes of water erupting from the surface. These plumes were estimated to be reaching up to 200 km (125 miles) from the southern region of Europa before (presumably) raining back onto the surface, depositing water ice and material from the interior.

The purpose of the observation was to examine Europa’s possible extended atmosphere (aka. exosphere). The method the team employed was similar to the one used to detect atmospheres around extra-solar planets. As William Sparks of the Space Telescope Science Institute (STScI) in Baltimore (and the team leader), explained in a NASA press release:

“The atmosphere of an extrasolar planet blocks some of the starlight that is behind it. If there is a thin atmosphere around Europa, it has the potential to block some of the light of Jupiter, and we could see it as a silhouette. And so we were looking for absorption features around the limb of Europa as it transited the smooth face of Jupiter.”

When they looked at Europa using this same technique, they noted that small patches on the surface were dark, indicating the absorption of UV light. This corresponded to previous work done by Lorenz Roth (of the Southwest Research Institute) and his team of researchers in 2012. At this time, they detected evidence of water vapor coming from Europa’s southern polar region.

Europa transit illustration. Europa orbits Jupiter every 3 and a half days, and on every orbit it passes in front of Jupiter, raising the possibility of plumes being seen as silhouettes absorbing the background light of Jupiter. Credits: A. Field (STScI)
Europa transit illustration. Europa orbits Jupiter every 3 and a half days, and on every orbit it passes in front of Jupiter, raising the possibility of plumes being seen as silhouettes absorbing the background light of Jupiter. Credits: A. Field (STScI)

As they indicated in a paper detailing their results – titled “Transient Water Vapor at Europa’s South Pole” – Roth’s team also relied on UV observations made using the Hubble telescope. Noting a statistically coincident amount of hydrogen and oxygen emissions, they concluded that this was the result of ejected water vapor being broken apart by Jupiter’s radiation (a process known as radiolysis).

Though their methods differed, Sparks and his research team also found evidence of these apparent water plumes, and in the same place no less. Based on the latest information from STIS, most of the apparent plumes are located in the moon’s southern polar region while another appears to be located in the equatorial region.

“When we calculate in a completely different way the amount of material that would be needed to create these absorption features, it’s pretty similar to what Roth and his team found,” Sparks said. “The estimates for the mass are similar, the estimates for the height of the plumes are similar. The latitude of two of the plume candidates we see corresponds to their earlier work.”

Another interesting conclusion to come from this and the 2012 study is the likelihood that these water plumes are intermittent. Basically, Europa is tidally-locked world, which means the same side is always being presented to us when it transits Jupiter. This occus once every 3.5 days, thus giving astronomers and planetary scientists plenty of viewing opportunities.

 This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The Hubble data were taken on January 26, 2014. Credit: Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center
This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The Hubble data were taken on January 26, 2014. Credit: Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center

But the fact that plumes have been observed at some points and not others would seem to indicate that they are periodic. In addition, Roth’s team attempted to spot one of the plume’s observed by Sparks and his colleagues a week after they reported it. However, they were unable to locate this supposed water source. As such, it would appear that the plumes, if they do exist, are short-lived.

These findings are immensely significant for two reasons. On the one hand, they are further evidence that a warm-water, saline ocean exists beneath Europa’s icy surface. On the other, they indicate that any future mission to Europa would be able to access this salt-water ocean with greater ease.

Ever since the Galileo spacecraft conducted a flyby of the Jovian moon, scientists have believed that an interior ocean is lying beneath Europa’s icy surface – one that has between two and three times as much water as all of Earth’s oceans combined. However, estimates of the ice’s thickness range from it being between 10 to 30 km (6–19 mi) thick – with a ductile “warm ice” layer that increases its total thickness to as much as 100 km (60 mi).

Knowing the water periodically reaches the surface through fissures in the ice would mean that any future mission (which would likely include a submarine) would not have to drill so deep. And considering that Europa’s interior ocean is considered to be one of our best bets for finding extra-terrestrial life, knowing that the ocean is accessible is certainly exciting news.

A comparison of 2014 transit and 2012 Europa aurora observations. The raw transit image, left, has dark fingers or patches of possible absorption in the same place that a different team (led by Lorenz Roth) found auroral emission from hydrogen and oxygen, the dissociation products of water. Credits: NASA, ESA, W. Sparks (left image) L. Roth (right image)
A comparison of 2014 transit and 2012 Europa aurora observations. Credits: NASA, ESA, W. Sparks (left image) L. Roth (right image)

And the news is certainly causing its fair share of excitement for the people who are currently developing NASA’s proposed Mission to Europa, which is scheduled to launch sometime in the 2020s. As Dr. Cynthia B. Phillips, a Staff Scientist and the Science Communications Lead for the Europa Project, told Universe Today via email:

“This new discovery, using Hubble Space Telescope data, is an intriguing data point that helps lend support to the idea that there are active plumes on Europa today. While not an absolute confirmation, the new Sparks et al. result, in combination with previous observations by Roth et al. (also using HST but with a different technique), is consistent with the presence of intermittent plumes ejecting water vapor from the Southern Hemisphere of Europa. Such observations are difficult to perform from Earth, however, even with Hubble, and thus these results remain inconclusive.

“Confirming the presence or absence of plumes on Europa, as well as investigating many other mysteries of this icy ocean world, will require a dedicated spacecraft in the Jupiter system.   NASA currently plans to send a multiple-flyby spacecraft to Europa, which would make many close passes by Europa in the next decade. The spacecraft’s powerful suite of scientific instruments will be able to study Europa’s surface and subsurface in unprecedented detail, and if plumes do exist, it will be able to observe them directly and even potentially measure their composition.  Until the Europa spacecraft is in place, however, Earth-based observations such as the new Hubble Space Telescope results will remain our best technique to observe Jupiter’s mysterious moon.”

Naturally, Sparks was clear that this latest information was not entirely conclusive. While he believes that the results were statistically significant, and that there were no indications of artifacts in the data, he also emphasized that observations conducted in the UV wavelength are tricky. Therefore, more evidence is needed before anything can be said definitively.

In the future, it is hoped that future observation will help to confirm the existence of water plumes, and how these could have helped create Europa’s “chaos terrain”. Future missions, like NASA’s James Webb Space Telescope (scheduled to launch in 2018) could help confirm plume activity by observing the moon in infrared wavelengths.

As Paul Hertz, the director of the Astrophysics Division at NASA Headquarters in Washington, said:

“Hubble’s unique capabilities enabled it to capture these plumes, once again demonstrating Hubble’s ability to make observations it was never designed to make. This observation opens up a world of possibilities, and we look forward to future missions — such as the James Webb Space Telescope — to follow up on this exciting discovery.”

Other team members include Britney Schmidt, an assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta; and Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Their work will be published in the Sept. 29 issue of the Astrophysical Journal.

And be sure to enjoy this video by NASA about this exciting find:

Further Reading: NASA Live

Uranus & Neptune May Keep “Hitler’s Acid” Stable Under Massive Pressure

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

“Hitler’s acid” is a colloquial name used to refer to Orthocarbonic acid – a name which was inspired from the fact that the molecule’s appearance resembles a swastika. As chemical compounds go, it is quite exotic, and chemists are still not sure how to create it under laboratory conditions.

But it just so happens that this acid could exist in the interiors of planets like Uranus and Neptune. According to a recent study from a team of Russian chemists, the conditions inside Uranus and Neptune could be ideal for creating exotic molecular and polymeric compounds, and keeping them under stable conditions.

The study was produced by researchers from the Moscow Institute of Physics and Technology (MIPT) and the Skolkovo Institute of Science and Technology (Skoltech). Titled “Novel Stable Compounds in the C-H-O Ternary System at High Pressure”, the paper describes how the high pressure environments inside planets could create compounds that exist nowhere else in the Solar System.

Orthocarbonic acid (also known as Hitler's acid). Credit: Moscow Institute of Physics and Technology
Orthocarbonic acid (also known as Hitler’s acid). Credit: Moscow Institute of Physics and Technology

Professor Artem Oganov – a professor at Skoltech and the head of MIPT’s Computational Materials Discovery Lab – is the study’s lead author. Years back, he and a team of researchers developed the worlds most powerful algorithm for predicting the formation of crystal structures and chemical compounds under extreme conditions.

Known as the Universal Structure Predictor: Evolutionary Xtallography (UPSEX), scientists have since used this algorithm to predict the existence of substances that are considered impossible in classical chemistry, but which could exist where pressures and temperatures are high enough – i.e. the interior of a planet.

With the help of Gabriele Saleh, a postdoc member of MIPT and the co-author of the paper, the two decided to use the algorithm to study how the carbon-hydrogen-oxygen system would behave under high pressure. These elements are plentiful in our Solar System, and are the basis of organic chemistry.

Until now, it has not been clear how these elements behave when subjected to extremes of temperature and pressure. What they found was that under these types of extreme conditions, which are the norm inside gas giants, these elements form some truly exotic compounds.

The interior structure of Uranus. Credit: Moscow Institute of Physics and Technology
Diagram of the interior structure of Uranus. Credit: Moscow Institute of Physics and Technology

As Prof. Oganov explained in a MIPT press release:

“The smaller gas giants – Uranus and Neptune – consist largely of carbon, hydrogen and oxygen. We have found that at a pressure of several million atmospheres unexpected compounds should form in their interiors. The cores of these planets may largely consist of these exotic materials.”

Under normal pressure – i.e. what we experience here on Earth (100 kPa) – any carbon, hydrogen or oxygen compounds (with the exception of methane, water and CO²) are unstable. But at pressures in the range 1 to 400 GPa (10,000 to 4 million times Earth normal), they become stable enough to form several new substances.

These include carbonic  acid, orthocarbonic acid (Hitler’s acid) and other rare compounds. This was a very unusual find, considering that these chemicals are unstable under normal pressure conditions. In carbonic acid’s case, it can only remain stable when kept at very low temperatures in a vacuum.

 The interior structure of Neptune. Credit: Moscow Institute of Physics and Technology
Diagram of the interior structure of Neptune. Credit: Moscow Institute of Physics and Technology

At pressures of 314 GPa, they determined that carbonic acid (H²CO³) would react with water to form orthocarbonic acid (H4CO4). This acid is also extremely unstable, and so far, scientists have not yet been able to produce it in a laboratory environment.

This research is of considerable importance when it comes to modelling the interior of planets like Uranus and Neptune. Like all gas giants, the structure and composition of their interiors have remained the subject of speculation due to their inaccessible nature. But it could also have implications in the search for life beyond Earth.

According to Oganov and Saleh, the interiors of many moons that orbit gas giants (like Europa, Ganymede and Enceladus) also experience these types of pressure conditions. Knowing that these kinds of exotic compounds could exist in their interiors is likely to change what scientist’s think is going on under their icy surfaces.

“It was previously thought that the oceans in these satellites are in direct contact with the rocky core and a chemical reaction took place between them,” said Oganov. “Our study shows that the core should be ‘wrapped’ in a layer of crystallized carbonic acid, which means that a reaction between the core and the ocean would be impossible.”

Europa's cracked, icy surface imaged by NASA's Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute.
Europa’s cracked, icy surface imaged by NASA’s Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI

For some time, scientists have understood that at high temperatures and pressures, the properties of matter change pretty drastically. And while here on Earth, atmospheric pressure and temperatures are quite stable (just the way we like them!), the situation in the outer Solar System is much different.

By modelling what can occur under these conditions, and knowing what chemical buildings blocks are involved, we could be able to determine with a fair degree of confidence what the interior’s of inaccessible bodies are like. This will give us something to work with when the day comes (hopefully soon) that we can investigate them directly.

Who knows? In the coming years, a mission to Europa may find that the core-mantle boundary is not a habitable environment after all. Rather than a watery environment kept warm by hydrothermal activity, it might instead by a thick layer of chemical soup.

Then again, we may find that the interaction of these chemicals with geothermal energy could produce organic life that is even more exotic!

Further Reading: MIPT, Nature Scientific Reports