Giant Stars and the Ultimate Fate of the Sun

Sizes of giant stars relative to our Sun. Going from the G-type to K-type to M-types, giant stars get progressively redder (cooler) and larger. Late M-type giants are more than 100 times the size of our Sun. Image Credit: Lowell Observatory.

Astronomers have a new tool to help them understand giant stars. It’s a detailed study of the precise temperatures and sizes of 191 giant stars. The authors of the work say that it’ll serve as a standard reference on giant stars for years to come.

It’ll also shed some light on what the Sun will go through late in its life.

Continue reading “Giant Stars and the Ultimate Fate of the Sun”

A new measurement puts the Sun 2,000 light-years closer to the center of the Milky Way

Standing beside the Milky Way. Credit: P. Horálek/ESO

Where are we? Cosmically, we’re in our home galaxy, typically known as the Milky Way. The center of our galaxy is marked by a supermassive black hole, which the Sun orbits at a distance of about 30,000 light-years. The official distance, set by the International Astronomical Union in 1985, is 27,700 light-years. But a new study as confirmed we are actually a bit closer to the black hole.

Continue reading “A new measurement puts the Sun 2,000 light-years closer to the center of the Milky Way”

What’s Happening with Betelgeuse? Astronomers Propose a Specialized Telescope to Watch the Star Every Night

Artist's impression of Betelgeuse. Credit: ESO/L. Calçada

Starting in late 2019, Betelgeuse began drawing a lot of attention after it mysteriously started dimming, only to brighten again a few months later. For a variable star like Betelgeuse, periodic dimming and brightening are normal, but the extent of its fluctuation led to all sorts of theories as to what might be causing it. Similar to Tabby’s Star in 2015, astronomers offered up the usual suspects (minus the alien megastructure theory!)

Whereas some thought that the dimming was a prelude to the star becoming a Type II supernova, others suggested that dust clouds, enormous sunspots, or ejected clouds of gas were the culprit. In any case, the “Great Dimming of Betelgeuse” has motivated an international team of astronomers to propose that a “Betelgeuse Scope” be created that cant monitor the star constantly.

Continue reading “What’s Happening with Betelgeuse? Astronomers Propose a Specialized Telescope to Watch the Star Every Night”

Gamma-Ray Telescopes Can Measure the Diameters of Other Stars

The VERITAS array, an air Cherenkov telescope designed to detect low-energy cosmic rays. Credit: VERITAS

In astronomy, the sharpness of your image depends upon the size of your telescope. When Galileo and others began to view the heavens with telescopes centuries ago, it changed our understanding of the cosmos. Objects such as planets, seen as points of light with the naked eye, could now be seen as orbs with surface features. But even under these early telescopes, stars still appeared as a point of light. While Galileo could see Jupiter or Saturn’s size, he had no way to know the size of a star.

Continue reading “Gamma-Ray Telescopes Can Measure the Diameters of Other Stars”

More Pictures of Planet-Forming Disks Around Young Stars

The fifteen images of protoplanetary disks, captured with ESO's Very Large Telescope Interferometer. CREDIT Jacques Kluska et al.

Astronomy is advancing to the point where we can see planets forming around young stars. This was an unthinkable development only a few years ago. In fact, it was only two years ago that astronomers captured the first image of a newly-forming planet.

Now there are more and more studies into how planets form, including a new one with fifteen images of planet-forming disks around young stars.

Continue reading “More Pictures of Planet-Forming Disks Around Young Stars”

How Interferometry Works, and Why it’s so Powerful for Astronomy

Three of the dishes that make up the Atacama Large Millimeter/submillimter Array (ALMA). Image Credit: H. Calderón – ALMA (ESO/NRAO/NAOJ)
Three of the dishes that make up the Atacama Large Millimeter/submillimter Array (ALMA). Image Credit: H. Calderón – ALMA (ESO/NRAO/NAOJ)

When astronomers talk about an optical telescope, they often mention the size of its mirror. That’s because the larger your mirror, the sharper your view of the heavens can be. It’s known as resolving power, and it is due to a property of light known as diffraction. When light passes through an opening, such as the opening of the telescope, it will tend to spread out or diffract. The smaller the opening, the more the light spreads making your image more blurry. This is why larger telescopes can capture a sharper image than smaller ones.

Continue reading “How Interferometry Works, and Why it’s so Powerful for Astronomy”

One of Our Best Views of the Supermassive Black Hole at the Heart of the Milky Way

Top left: simulation of Sgr A* at 86 GHz without interstellar scattering. Top right: simulation with interstellar scattering. Bottom right: observed image of Sgr A*. Bottom left: observed image of Sgr A* after removing the effects of interstellar scattering. Credit: S. Issaoun, M. Mo?cibrodzka, Radboud University/ M. D. Johnson, CfA
Top left: simulation of Sgr A* at 86 GHz without interstellar scattering. Top right: simulation with interstellar scattering. Bottom right: observed image of Sgr A*. Bottom left: observed image of Sgr A* after removing the effects of interstellar scattering. Credit: S. Issaoun, M. Mo?cibrodzka, Radboud University/ M. D. Johnson, CfA

An almost unimaginably enormous black hole is situated at the heart of the Milky Way. It’s called a Supermassive Black Hole (SMBH), and astronomers think that almost all massive galaxies have one at their center. But of course, nobody’s ever seen one (sort of, more on that later): It’s all based on evidence other than direct observation.

The Milky Way’s SMBH is called Sagittarius A* (Sgr. A*) and it’s about 4 million times more massive than the Sun. Scientists know it’s there because we can observe the effect it has on matter that gets too close to it. Now, we have one of our best views yet of Sgr. A*, thanks to a team of scientists using a technique called interferometry.

Continue reading “One of Our Best Views of the Supermassive Black Hole at the Heart of the Milky Way”

Next Generation Telescopes Could Use “Teleportation” to Take Better Images

The Very Large Telescope in Chile firing a laser from its adaptive optics system. Credit: ESO

Telescopes have come a long way in the past few centuries. From the comparatively modest devices built by astronomers like Galileo Galilei and Johannes Kepler, telescopes have evolved to become massive instruments that require an entire facility to house them and a full crew and network of computers to run them. And in the coming years, much larger observatories will be constructed that can do even more.

Unfortunately, this trend towards larger and larger instruments has many drawbacks. For starters, increasingly large observatories require either increasingly large mirrors or many telescopes working together – both of which are expensive prospects.  Luckily, a team from MIT has proposed combining interferometry with quantum-teleportation, which could significantly increase the resolution of arrays without relying on larger mirrors.

Simulated View of a Newly Forming Planetary System with Rings and Gaps

A model of the dust ring around the young star Elias 24, produced from simulations based on new ALMA millimeter images of the system. The model finds that the dust was shaped by a planet with 70% of Jupiter's mass located about 60 au from the star. Credit: Dipierro et al. 2018

When searching for extra-solar planets, astronomers most often rely on a number of indirect techniques. Of these, the Transit Method (aka. Transit Photometry) and the Radial Velocity Method (aka. Doppler Spectroscopy) are the two most effective and reliable (especially when used in combination). Unfortunately, direct imaging is rare since it is very difficult to spot a faint exoplanet amidst the glare of its host star.

However, improvements in radio interferometers and near-infrared imaging has allowed astronomers to image protoplanetary discs and infer the orbits of exoplanets. Using this method, an international team of astronomers recently captured images of a newly-forming planetary system. By studying the gaps and ring-like structures of this system, the team was able to hypothesize the possible size of an exoplanet.

The study, titled “Rings and gaps in the disc around Elias 24 revealed by ALMA “, recently appeared in the Monthly Notices of the Royal Astronomical Society. The team was led by Giovanni Dipierro, an astrophysicist from the University of Leicester, and included members from the Harvard–Smithsonian Center for Astrophysics (CfA), the Joint ALMA Observatory, the National Radio Astronomy Observatory, the Max-Planck Institute for Astronomy, and multiple universities and research institutes.

Artist’s impression of circumstellar disc of debris around a distant star. Credit: NASA/JPL

In the past, rings of dust have been identified in many protoplanetary systems, and their origins and relation to planetary formation are the subject of much debate. On the one hand, they might be the result of dust piling up in certain regions, of gravitational instabilities, or even variations in the optical properties of the dust. Alternately, they could be the result of planets that have already developed, which cause the dust to dissipate as they pass through it.

As Dipierro and his colleagues explained in their study:

“The alternative scenario invokes discs that are dynamically active, in which planets have already formed or are in the act of formation. An embedded planet will excite density waves in the surrounding disc, that then deposit their angular momentum as they are dissipated. If the planet is massive enough, the exchange of angular momentum between the waves created by the planet and the disc results in the formation of a single or multiple gaps, whose morphological features are closely linked to the local disc conditions and the planet properties.”

For the sake of their study, the team used data from the Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations – which began back in June of 2014. In so doing, they were able to image the dust around Elias 24 with a resolution of about 28 AU (i.e. 28 times the distance between the Earth and the Sun). What they found was evidence of gaps and rings that could be an indication of an orbiting planet.

From this, they constructed a model of the system that took into account the mass and location of this potential planet and how the distribution and density of dust would cause it to evolve. As they indicate in their study, their model reproduces the observations of the dust ring quite well, and predicted the presence of a Jupiter-like gas giant within forty-four thousand years:

“We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of ?0.7?MJ at an orbital radius of ? 60?au… The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of ?5?per?cent of the observed fluxes around the gap region.”

Thie sharpest image ever taken by ALMA showing the protoplanetary disc surrounding the young star HL Tauri. Credit: ALMA (ESO/NAOJ/NRAO)

 

These results reinforce the conclusion that the gaps and rings that have been observed in a wide variety of young circumstellar discs indicate the presence of orbiting planets. As the team indicated, this is consistent with other observations of protoplanetary discs, and could help shed light on the process of planetary formation.

“The picture that is emerging from the recent high resolution and high sensitivity observations of protoplanetary discs is that gap and ring-like features are prevalent in a large range of discs with different masses and ages,” they conclude. “New high resolution and high fidelity ALMA images of dust thermal and CO line emission and high quality scattering data will be helpful to find further evidences of the mechanisms behind their formation.”

One of the toughest challenges when it comes to studying the formation and evolution of planets is the fact that astronomers have been traditionally unable to see the processes in action. But thanks to improvements in instruments and the ability to study extra-solar star systems, astronomers have been able to see system’s at different points in the formation process.

This in turn is helping us refine our theories of how the Solar System came to be, and may one day allow us to predict exactly what kinds of systems can form in young star systems.

Further Reading: CfA, MNRAS

Distant Stellar Nurseries: This Time, in High Definition

The Milky Way glitters above the ALMA array in this image taken from a time lapse sequence during the ESO Ultra HD Expedition.

This article is a guest post by Anna Ho, who is currently doing research on stars in the Milky Way through a one-year Fulbright Scholarship at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany.

In the Milky Way, an average of seven new stars are born every year. In the distant galaxy GN20, an astonishing average of 1,850 new stars are born every year. “How,” you might ask, indignant on behalf of our galactic home, “does GN20 manage 1,850 new stars in the time it takes the Milky Way to pull off one?”

To answer this, we would ideally take a detailed look at the stellar nurseries in GN20, and a detailed look at the stellar nurseries in the Milky Way, and see what makes the former so much more productive than the latter.

But GN20 is simply too far away for a detailed look.

This galaxy is so distant that its light took twelve billion years to reach our telescopes. For reference, Earth itself is only 4.5 billion years old and the universe itself is thought to be about 14 billion years old. Since light takes time to travel, looking out across space means looking back across time, so GN20 is not only a distant, but also a very ancient, galaxy. And, until recently, astronomers’ vision of these distant, ancient galaxies has been blurry.

Consider what happens when you try to load a video with a slow Internet connection, or when you download a low-resolution picture and then stretch it. The image is pixelated. What was once a person’s face becomes a few squares: a couple of brown squares for hair, a couple of pink squares for the face. The low-definition picture makes it impossible to see details: the eyes, the nose, the facial expression.

A face has many details and a galaxy has many varied stellar nurseries. But poor resolution, a result simply of the fact that ancient galaxies like GN20 are separated from our telescopes by vast cosmic distances, has forced astronomers to blur together all of this rich information into a single point.

The situation is completely different here at home in the Milky Way. Astronomers have been able to peer deep into stellar nurseries and witness stellar birth in stunning detail. In 2006, the Hubble Space Telescope took this unprecedentedly detailed action shot of stellar birth at the heart of the Orion Nebula, one of the Milky Way’s most famous stellar nurseries:

hs-2006-01-a-xlarge_web
A detailed close-up of stellar birth. Credit: NASA,ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team

There are over 3,000 stars in this image: The glowing dots are newborn stars that have recently emerged from their cocoons. Stellar cocoons are made of gas: thousands of these gas cocoons sit nestled in immense cosmic nurseries, which are rich with gas and dust. The central region of that Hubble image, encased by what looks like a bubble, is so clear and bright because the massive stars within have blown away the dust and gas they were forged from. Majestic stellar nurseries are scattered all over the Milky Way, and astronomers have been very successful at uncloaking them in order to understand how stars are made.

Observing nurseries both here at home and in relatively nearby galaxies has enabled astronomers to make great leaps in understanding stellar birth in general: and, in particular, what makes one nursery, or one star formation region, “better” at building stars than another. The answer seems to be: how much gas there is in a particular region. More gas, faster rate of star birth. This relationship between the density of gas and the rate of stellar birth is called the Kennicutt-Schmidt Law. In 1959, the Dutch astronomer Maarten Schmidt raised the question of how exactly increasing gas density influences star birth, and forty years later, in an illustration of how scientific dialogues can span decades, his American colleague Robert Kennicutt used data from 97 galaxies to answer him.

Understanding the Kennicutt-Schmidt Law is crucial for determining how stars form and even how galaxies evolve. One fundamental question is whether there is one rule that governs all galaxies, or whether one rule governs our galactic neighborhood, but a different rule governs distant galaxies. In particular, a family of distant galaxies known as “starburst galaxies” seems to contain particularly productive nurseries. Dissecting these distant, highly efficient stellar factories would mean probing galaxies as they used to be, back near the beginning of the universe.

Enter GN20. GN20 is one of the brightest, most productive of these starburst galaxies. Previously a pixelated dot in astronomers’ images, GN20 has become an example of a transformation in technological capability.

In December 2014, an international team of astronomers led by Dr. Jacqueline Hodge of the National Radio Astronomy Observatory in the USA, and comprising astronomers from Germany, the United Kingdom, France, and Austria, were able to construct an unprecedentedly detailed picture of the stellar nurseries in GN20. Their results were published earlier this year.

The key is a technique called interferometry: observing one object with many telescopes, and combining the information from all the telescopes to construct one detailed image. Dr. Hodge’s team used some of the most sophisticated interferometers in the world: the Karl G. Jansky Very Large Array (VLA) in the New Mexico desert, and the Plateau de Bure Interferometer (PdBI) at 2550 meters (8370 feet) above sea level in the French Alps.

With data from these interferometers as well as the Hubble Space Telescope, they turned what used to be one dot into the following composite image:

hodgeetal-1412-2132_f7
GN20 in unprecedented detail (false color image). The 10 kpc (10,000 parsec) scale corresponds to 32,600 light-years. Image credit: Jacqueline Hodge et al. 2015

This is a false color image, and each color stands for a different component of the galaxy. Blue is ultraviolet light, captured by the Hubble Space Telescope. Green is cold molecular gas, imaged by the VLA. And red is warm dust, heated by the star formation it is shrouding, detected by the PdBI.

Unbundling one pixel into many enabled the team to determine that the nurseries in a starburst galaxy like GN20 are fundamentally different from those in a “normal” galaxy like the Milky Way. Given the same amount of gas, GN20 can churn out orders of magnitude more stars than the Milky Way can. It doesn’t simply have more raw material: it is more efficient at fashioning stars out of it.

ann12099a
Some of the 66 radio antennas of ALMA, which can be linked to act like a much larger telescope. Image credit: ALMA (ESO/NAOJ/NRAO)/B. Tafreshi (twanight.org)

This kind of study is currently unique to the extreme case of GN20. However, it will be more common with the new generation of interferometers, such as the Atacama Large Millimeter/submillimeter Array (ALMA).

Located 5000 meters (16000 feet) high up in the Chilean Andes, ALMA is poised to transform astronomers’ understanding of stellar birth. State-of-the-art telescopes are enabling astronomers to do the kind of detailed science with distant galaxies – ancient galaxies from the early universe – that was once thought to be possible only for our local neighborhood. This is crucial in the scientific quest for universal physical laws, as astronomers are able to test their theories beyond our neighborhood, out across space and back through time.