A Test Image From Webb Just Happens to be the Deepest Image Ever Taken of the Universe

This Fine Guidance Sensor test image was acquired in parallel with NIRCam imaging of the star HD147980 over a period of eight days at the beginning of May. This engineering image represents a total of 32 hours of exposure time at several overlapping pointings of the Guider 2 channel. The observations were not optimized for detection of faint objects, but nevertheless the image captures extremely faint objects and is, for now, the deepest image of the infrared sky. The unfiltered wavelength response of the guider, from 0.6 to 5 micrometers, helps provide this extreme sensitivity. The image is mono-chromatic and is displayed in false color with white-yellow-orange-red representing the progression from brightest to dimmest. The bright star (at 9.3 magnitude) on the right hand edge is 2MASS 16235798+2826079. There are only a handful of stars in this image – distinguished by their diffraction spikes. The rest of the objects are thousands of faint galaxies, some in the nearby universe, but many, many more in the distant universe. Credit: NASA, CSA, and FGS team.

A ‘throwaway’ engineering image from the James Webb Space Telescope’s commissioning phase has turned out to be a stunningly deep view of the cosmos. It rivals the deepest of Hubble Deep Field images in revealing previously unseen distant galaxies.

Continue reading “A Test Image From Webb Just Happens to be the Deepest Image Ever Taken of the Universe”

Good News! NASA Announces that they have Fixed Hubble!

Will China's new space telescope out-perform the Hubble? Image:
The Hubble Space Telescope. Image: NASA

Update: Hubble took its first picture since it went into safe mode on June 13th! More info here.

On Sunday, June 13th, the Hubble Space Telescope gave the astronomical community a fright when its payload computer suddenly stopped working. This prompted the main computer to put the telescope and its scientific instruments into safe mode. What followed was many tense weeks as the operations team for the HST tried to figure out what the source of the problem was and come up with a strategy for turning Hubble back on.

On Friday, July 17th, after more than a month of checking, re-checking, and attempted restarts, the operations team for Hubble identified the root of the problem and restored power to the telescope’s hardware and all of its instruments. Science operations can now resume, and the pioneering space telescope that gave us over thirty years of dedicated astronomy, cosmology, and astrophysics, still has some life in her!

Continue reading “Good News! NASA Announces that they have Fixed Hubble!”

NASA Continues to Try and Rescue Failing Hubble

Will China's new space telescope out-perform the Hubble? Image:
The Hubble Space Telescope. Image: NASA

Things are not looking very good for the Hubble Space Telescope right now. On Sunday, June 13th, the telescope’s payload computer suddenly stopped working, prompting the main computer to put the telescope into safe mode. While the telescope itself and its science instruments remain in working order, science operations have been suspended until the operations team can figure out how to get the payload computer back online.

While attempting to restart the computer, the operations team has also tried to trace the issue to specific components in the payload computer and switch to their backup modules. As of June 30th, the team began looking into the Command Unit/Science Data Formatter (CU/SDF) and the Power Control Unit (PCU). Meanwhile, NASA is busy preparing and testing procedures to switch to backup hardware if either of these components are the culprit.

Continue reading “NASA Continues to Try and Rescue Failing Hubble”

The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky

This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field. Image Credit: NASA, ESA, and A. Koekemoer (STScI) Acknowledgement: Digitized Sky Survey

Remember the Hubble Deep Field? And its successor the Hubble Ultra Deep Field? We sure do here at Universe Today. How could we forget them?

Well, just as the Hubble Space Telescope has successors, so do two of its most famous images. And those successors will come from one of Hubble’s successors, NASA’s Roman Space Telescope.

Continue reading “The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky”

Hubble is the Ultimate Multitasker: Discovering Asteroids While it’s Doing Other Observations

Some asteroids from within our Solar System have photobombed deep images of the Universe taken by the NASA/ESA Hubble Space Telescope. These asteroids reside, on average, only about 260 million kilometres from Earth — right around the corner in astronomical terms. Yet they've horned their way into this picture of thousands of galaxies scattered across space and time at inconceivably farther distances. This Hubble photo of a random patch of sky is part of the Frontier Fields survey. The colourful image contains thousands of galaxies, including massive yellowish ellipticals and majestic blue spirals. Much smaller, fragmentary blue galaxies are sprinkled throughout the field. The reddest objects are most likely the farthest galaxies, whose light has been stretched into the red part of the spectrum by the expansion of space. Intruding across the picture are asteroid trails that appear as curved or S-shaped streaks. Rather than leaving one long trail, the asteroids appear in multiple Hubble exposures that have been combined into one image. Of the 20 total asteroid sightings for this field, seven are unique objects. Of these seven asteroids, only two were earlier identified. The others were too faint to be seen previously. The trails look curved due to an observational effect called parallax. As Hubble orbits around Earth, an asteroid will appear to move along an arc with respect to the vastly more distant background stars and galaxies. The motion of Earth around the Sun, and the motion of the asteroids along their orbits, are other contributing factors to the apparent skewing of asteroid paths. All the asteroids were found manually, the majority by "blinking" consecutive exposures to capture apparent asteroid motion. Astronomers found a unique asteroid for every 10 to 20 hours of exposure time. The Frontier Fields program is a collaboration among several space telescopes and ground-based observatories to study six massive galaxy clusters and their effects. Using a diff

It looks like a poster of the famous Hubble Deep Field, marked with white streaks by a child, or put away carelessly and scratched in the process. But it’s not. The white streaks aren’t accidents; they’re the paths of asteroids.

Continue reading “Hubble is the Ultimate Multitasker: Discovering Asteroids While it’s Doing Other Observations”

A Long Exposure Hubble Image of a Galaxy Cluster Also Turned up 22 Asteroids

Hubble image of the galaxy cluster Abell 370, showing the trails caused by 22 Near-Earth Asteroids. Credit: NASA, ESA, and B. Sunnquist and J. Mack (STScI) Acknowledgment: NASA, ESA, and J. Lotz (STScI) and the HFF Team

The Hubble Space Telescope is the oldest space telescope in operation, having spent the past twenty-eight years in orbit. Nevertheless, this mission is still hard at work revealing things about our Solar System, neighboring exoplanets, and some of the farthest reaches of the Universe. And every so often, it also captures an image that happens to turn up something interesting and unexpected.

Recently, while conducting a study of Abell 370, a galaxy cluster located approximately four billion light-years away in the constellation Cetus (the Sea Monster), Hubble managed to spot something in foreground. While observing this collection of several hundred galaxiess, the image was photobombed by 22 asteroids whose tails created streaks that looked like background astronomical phenomena.

The study was part of the Frontier Fields program, where Hubble has captured images of some of the earliest galaxies in the Universe (aka. “relic galaxies”) in order to determine how it evolved over time. The position of this asteroid field is near the ecliptic (the plane of our Solar System) where most asteroids reside, which is why Hubble astronomers saw so many crossings.

Artist’s impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

In the past, Hubble has recorded many instances of asteroid trails when conducting observations along a line-of-sight near the plane of our Solar System. In this case, the Near-Earth Asteroids (NEAs) – which orbit Earth at an average distance of about 260 million km (161.5 million mi) – were previously undetected due to their faintness. But thanks to the images taken by Hubble, scientists were able to identify them manually based on their motion.

Of the 22 asteroids, five were identified as unique objects. The image was assembled from several exposures taken in visible and infrared light, which was first released on November 6th, 2017. The image was prepared in honor of “Asteroid Day”, a global annual event that takes place every June 30th to raise awareness about asteroids and what can be done to protect Earth from a possible impact.

The day falls on the anniversary of the Tunguska event, which took place on June 30th, 1918, in eastern Russia and resulted in the flattening of 2,000 square km (770 square mi) of forest. While far less harmful than the Cretaceous–Paleogene (K–Pg) extinction event – which took place 66 million years ago and is believed to have killed the dinosaurs – Tunguska was the most harmful asteroid event in recorded history.

In many of the images snapped by Hubble, the asteroid tails appeared as white trails that look like curved streaks, an effect caused by parallax. In astronomy, parallax is an observational effect where the apparent position of an object appears to be different based on different lines of sight. Basically, as Hubble orbited around the Earth and took several images of the galaxy, the asteroids appeared to be moving relative to the background stars and galaxies.

The massive galaxy cluster Abell 370 as seen by Hubble Space Telescope in the final Frontier Fields observations. Credit: NASA/ESA/HFF

The asteroids own motion along their orbits and other contributing factors also led to their streaked appearance. Whereas the white streaks were identified as asteroid tails, the blue streaks are distorted images of distant galaxies behind the cluster. This effect is known as gravitational lensing, where light from distant objects is warped and magnified by the presence of an intervening object.

In this case, the intervening object who’s gravitational force magnified the light of the background galaxies was Abell 370. These more distant galaxies are too distant for Hubble to see directly, hence why astronomers use the technique to study the most distant objects in the Universe. But whereas the blue streaks were expected, the white streaks caused by asteroids took scientists completely by surprise!

This year, the European Space Agency (ESA) is co-hosting a live webcast with the European Southern Observatory (ESO) with expert interviews, news on some the most recent asteroid research, and a discussion about what killed the dinosaurs. You can watch this event tomorrow starting at 13:00 CEST (11:00 UST/04:00 PST) by going to the ESA’s Asteroid Day web page.

Further Reading: ESA

New IMAX Super Short: Galaxies Across Space and Time

Hubble Deep Field. Credit: NASA

“Hubble: Galaxies Across Space and Time” is an award-winning IMAX Super Short film. In less than 3 minutes you can explore 10 billion years of cosmic history as you fly through one of Hubble’s iconic images, the Hubble Deep Field. These galaxies were photographed by the Hubble Space Telescope as part of the Great Observatory Origins Deep Survey (GOODS) project. Hubble scientists and imaging specialists worked for months to extract individual galaxy images, placing them in a 3-D model according to their approximate true distances.

If you ever have the chance to see the big screen version of “Hubble 3-D IMAX,” do it. It’s an incredible cinematic view that portrays the immensity and gloriousness of our Universe like no other film I’ve seen. You can read my review of it here.

Hubble Goes to the eXtreme in Stunning New Deepest View Ever of the Universe

This image, called the Hubble eXtreme Deep Field (XDF), combines Hubble observations taken over the past decade of a small patch of sky in the constellation of Fornax. With a total of over two million seconds of exposure time, it is the deepest image of the Universe ever made, combining data from previous images including the Hubble Ultra Deep Field (taken in 2002 and 2003) and Hubble Ultra Deep Field Infrared (2009). The image covers an area less than a tenth of the width of the full Moon, making it just a 30 millionth of the whole sky. Yet even in this tiny fraction of the sky, the long exposure reveals about 5500 galaxies, some of them so distant that we see them when the Universe was less than 5% of its current age. The Hubble eXtreme Deep Field image contains several of the most distant objects ever identified. Credit: NASA

The Hubble eXtreme Deep Field (XDF) combines Hubble observations taken over the past decade of a small patch of sky in the constellation of Fornax. With a total of over two million seconds of exposure time, it is the deepest image of the Universe ever made. Credit: credit: NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team

Oh my! The Hubble Space Telescope has just outdone itself, taking the deepest-ever view of the Universe. But the new image really is a compilation of work over the past ten years, as the eXtreme Deep Field, or XDF was assembled by combining ten years of observations, with over 2 million seconds of exposure time, taken of a patch of sky in the center of the original Hubble Ultra Deep Field from 2004. The XDF is a small fraction of the angular diameter of the full Moon.

The new full-color XDF image is even more sensitive than the Hubble Ultra Deep Field image from 2004 and the original Hubble Deep Field image from 1995. The new XDF image contains about 5,500 galaxies, even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness that the unaided human eye can see.
Continue reading “Hubble Goes to the eXtreme in Stunning New Deepest View Ever of the Universe”