Organic Material Found on an Asteroid Sample Returned by Hayabusa 1

Panspermia is an idea that has been around for a long time.  It was first mentioned in the 5th century BC by Anaxagoras, one of the most prominent pre-Socratic philosophers.  The problem with the theory is that there’s never really been any evidence to back it up.  That lack of evidence has changed dramatically in the last 20 or so years, and recently more data has been added to that dataset.  A team from Royal Holloway, part of the University of London, found organic material and water in a sample of Itokawa, the asteroid the first Hayabusa mission visited over 10 years ago.

Continue reading “Organic Material Found on an Asteroid Sample Returned by Hayabusa 1”

Hayabusa’s Target Itokawa Formed 4.6 Billion Years Ago, But Then it Was Smashed Up About 1.5 Billion Years Ago

Within Earth’s orbit, there are an estimated eighteen-thousands Near-Earth Asteroids (NEAs), objects whose orbit periodically takes them close to Earth. Because these asteroids sometimes make close flybys to Earth – and have collided with Earth in the past – they are naturally seen as a potential hazard. For this reason, scientists are  dedicated to tracking NEAs, as well as studying their origin and evolution.

Continue reading “Hayabusa’s Target Itokawa Formed 4.6 Billion Years Ago, But Then it Was Smashed Up About 1.5 Billion Years Ago”

Returned Samples Of Asteroid Itokawa Show Violent 4.5 Billion Year History

The surface patterns on one of the microscopic dust particles from asteroid Itokawa. Image: JAXA

In 2003, the Japanese Aerospace Exploration Agency (JAXA) launched the Hayabusa probe. Its mission was to rendezvous with asteroid 25143 Itokawa in 2005. Once there, it studied a number of things about Itokawa, including its shape, topography, composition, colour, spin, density, and history. But the most exciting part of its mission was to collect samples from the asteroid and return them to Earth.

The mission suffered some complications, including the failure of Minerva, Hayabusa’s detachable mini-lander. But Hayabusa did land on the asteroid, and it did collect some samples; tiny grains of material from the surface of Itokawa. This was the first time a mission had landed somewhere and returned samples, other than missions to the Moon.

The Hayabusa spacecraft burned up on re-entry into Earth's atmosphere, but the capsule containing the samples survived. The glowing piece on the bottom front of the debris stream is the sample capsule. Image: NASA Ames, Public Domain
The Hayabusa spacecraft burned up on re-entry into Earth’s atmosphere, but the capsule containing the samples survived. The glowing piece on the bottom front of the debris stream is the sample capsule. Image: NASA Ames, Public Domain

Once the collected grains made it back to Earth in 2010, and were confirmed to be from the asteroid, scientists got excited. These grains would be key to helping understand the early Solar System when the planetary bodies were formed. And they have revealed a sometimes violent history going back 4.5 billion years.

The grains themselves are truly microscopic, at just over 10 micrometers in size. The marks and surface patterns on them are measured in nanometers. Initially, all the marks on the surfaces of the particles were thought to be of one type. But the team behind the study used electron microscopes and X-Ray Microtomography to reveal four different types of patterns on their surfaces.

One 4.5 billion year old pattern shows crystallization from intense heat. At this time period, Itokawa was part of a larger asteroid. The second pattern indicates a collision with a meteor about 1.3 billion years ago. Another pattern was formed by exposure to the solar wind between 1 million and 1,000 years ago. A fourth pattern detected by scientists shows that the particles have been rubbing against each other.

The team has concluded that Itokawa didn’t always exist in its current shape and form. When it was formed over 4 billion years ago, it was about 40 times bigger than it is now. That parent body was destroyed, and the researchers think that Itokawa re-formed from fragments of the parent body.

If there is still any lingering doubt about the violent nature of the Solar System’s history, the grains from Itokawa help dispel it. Collision, fragmentation, bombardments, and of course solar wind, seem to be the norm in our Solar System’s history.

The return of these samples was a bit of a happy accident. The sample collection mechanism on Hayabusa suffered a failure, and the returned dust grains were actually kicked up by the landing of the probe, and some ended up in the sample capsule.

For their part, JAXA has already launched Hayabusa’s successor, Hayabusa 2. It was launched in December 2014, and is headed for asteroid 162173 Ryugu. It should reach its destination in July 2018, and spend a year and a half there. Hayabusa 2 is also designed to collect asteroid samples and return them to Earth, this time using an explosive device to dig into the asteroid’s surface for a sample. Hayabusa 2 should return to Earth in December 2020.

An artist's image of Hayabusa leaving Earth. Image credit: JAXA
An artist’s image of Hayabusa leaving Earth. Image credit: JAXA

Hayabusa suffered several failures, including the failure of its mini-lander, problems with sample collection, and it even suffered damaged to its solar panels caused by a solar flare, which reduced its power and delayed its arrival at Itokawa. Yet it still ended up being a success in the end.

If Hayabusa 2 can avoid some of these problems, who knows what we may learn from more intentional samples. Sample missions are tricky and complex. If Hayabusa can return samples, it would be only the fourth body to have samples successfully returned to Earth, including the Moon, asteroid Itokawa, and comet Wild 2.

Comet Landing: Side-By-Side Pics Of Alien Surfaces Humanity Explored

Correction, 11:33 a.m. EST: The University of Central Florida’s Phil Metzger points out that the image composition leaves out Eros, which NEAR Shoemaker landed on in 2001. This article has been corrected to reflect that and to clarify that the surfaces pictured were from “soft” landings.

And now there are eight. With Philae’s incredible landing on a comet earlier this week, humans have now done soft landings on eight solar system bodies. And that’s just in the first 57 years of space exploration. How far do you think we’ll reach in the next six decades? Let us know in the comments … if you dare.

More seriously, this amazing composition comes courtesy of two people who generously compiled images from the following missions: Rosetta/Philae (European Space Agency), Hayabusa (Japan Aerospace Exploration Agency), Apollo 17 (NASA), Venera 14 (Soviet Union), the Spirit rover (NASA) and Cassini-Huygens (NASA/ESA). Omitted is NEAR Shoemaker, which landed on Eros in 2001.

Before Philae touched down on Comet 67P/Churyumov–Gerasimenko Wednesday, the NASA Jet Propulsion Laboratory’s Mike Malaska created a cool infographic of nearly every place we’ve lived or visited before then. This week, Michiel Straathof updated the infographic to include 67P (and generously gave us permission to use it.)

And remember that these are just the SURFACES of solar system bodies that we have visited. If you include all of the places that we have flown by or taken pictures from of a distance in space, the count numbers in the dozens — especially when considering prolific imagers such as Voyager 1 and Voyager 2, which flew by multiple planets and moons.

To check out a small sampling of pictures, visit this NASA website that shows some of the best shots we’ve taken in space.

Weekly Space Hangout – Oct. 3, 2014: Islands, Earwigs and Other Mysteries!

Host: Fraser Cain (@fcain)

Morgan Rehnberg ( / @cosmic_chatter)
David Dickinson ( / @astroguyz)
Ramin Skibba (@raminskibba)
Brian Koberlein (@briankoberlein)

Continue reading “Weekly Space Hangout – Oct. 3, 2014: Islands, Earwigs and Other Mysteries!”

Japanese ‘Space Cannon’ On Track For Aiming At An Asteroid: Reports

Watch out, asteroid 1999 JU3: you’re being targeted. As several media reports reminded us, the Japan Aerospace Exploration Agency (JAXA)’s Hayabusa-2 asteroid exploration mission will carry a ‘space cannon’ on board — media-speak for the “collision device” that will create an artificial crater on the asteroid’s surface.

“An artificial crater that can be created by the device is expected to be a small one with a few meters in diameter, but still, by acquiring samples from the surface that is exposed by a collision, we can get fresh samples that are less weathered by the space environment or heat,” JAXA states on its website.

Reports indicate JAXA is on schedule to, er, shoot this thing into space for a 2018 rendezvous with an asteroid. The spacecraft will stick around the asteroid for about a year before heading back to Earth in 2020. The overall aim is to learn more about the origin of the solar system by looking at a C-type asteroid, considered to be a “primordial body” that gives us clues as to the early solar system’s makeup.

Check out more on Hayabusa-2 on JAXA’s website.

Hayabusa 2 Mission Approved by Japanese Government


In 2010, the Japanese spacecraft Hayabusa completed an exciting although nail-biting mission to the asteroid Itokawa, successfully returning samples to Earth after first reaching the asteroid in 2005; the mission almost failed, with the spacecraft plagued by technical problems. The canister containing the microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

Now, the Japanese government has approved a follow-up mission, Hayabusa 2. This time the probe is scheduled to be launched in 2014 and rendezvous with the asteroid known as 1999 JU3 in mid-2018. Samples would again be taken and returned to Earth in late 2020.

1999 JU3 is approximately 914 metres (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, whereas Itokawa was much more oblong.

As is common for any space agency, the Japanese Aerospace Exploration Agency (JAXA) is working with tight budgets and deadlines to make this next mission happen. There is a possibility of a back-up launch window in 2015, but if that deadline is also not met, the mission will have to wait another decade to launch.

The asteroid Itokawa, visited by Hayabusa in 2005. Credit: JAXA

One of the main problems with Hayabusa was the failure of the sampling mechanism during the “landing” (actually more of a brief contact with the surface with the sample capturing device) to retrieve the samples for delivery back to Earth. Only a small amount of material made it into the sample capsule, but which was fortunate and ultimately made the mission a limited success. The microscopic grains were confirmed to have primarily come from Itokawa itself and are still being studied today.

To avoid a repetition of the glitches experienced by Hayabusa, some fundamental changes needed to be made.

This next spacecraft will use an updated ion propulsion engine, the same propulsion system used by Hayabusa, as well as improved guidance and navigation systems, new antennas and a new altitude control system.

For Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface, instead of the high-speed projectile used by Hayabusa. Perhaps not quite as dramatic, but hopefully more likely to succeed. Like its predecessor, the main objective of the mission is to collect as much surface material as possible for delivery back home.

Hopefully Hayabusa 2 will not be hampered by the same problems as Hayabusa; if JAXA can achieve this, it will be exciting to have samples returned from a second asteroid as well, which can only help to further our understanding of the history and formation of the solar system, and by extrapolation, even other solar systems as well.

Japanese Astronomy Pushes on After Hard Year


From faulty spacecraft to two damaged facilities, the past year has been a tough year for Japan’s astronomical programs. Yes despite the setbacks, Japan has already begun working to fix every problem they’ve faced in this difficult year.

The troubles started late last year as Japan’s Venus exploring spacecraft, Akatsuki failed to properly enter orbit around Venus. Ultimately, the failure was blamed on a faulty valve that didn’t allow the thruster to fire for the full length of the burn necessary to transfer into the correct orbit. Instead, the craft is now in a wide orbit around the Sun. The organization in charge of the probe, the Japan Aerospace Exploration Agency (JAXA) announced earlier this month that they will “attempt to reignite the damaged thruster nozzle” and, if the test goes well, can try again for an orbital insertion in November 2015.

The next setback came with the devastating March 11th earthquake which the facilities being used to study the samples returned from the sample and return mission Hayabusa were damaged. While the particles were safe, the sensitive accelerators that are used to study them suffered some damage. Restoration work is already underway and the teams in charge expect some operations to resume as early as this fall. Other instruments may take until early next year to resume operation. Despite the damage, the preliminary data (done before the Earthquake) has confirmed the particles are from the visited asteroid. They contain minerals such as olivine and iron sulfide contained in a rocky-type asteroid. No organic materials have been detected.

More recently, Japan’s flagship observatory, Subaru atop Mauna Kea, Hawaii, was damaged when coolant leaked onto several instruments as well as the primary mirror, halting operations early last month. According to the National Astronomical Observatory of Japan (NAOJ) which maintains the telescope, the mirror was washed with water which was successful in restoring its functionality. The primary camera, the Subaru Prime Focus Camera (Suprime-Cam) and its auxiliary equipment were also affected and are currently being inspected. However, the telescope has a second focus, known as a Nasmyth focus. Several instruments which make use of this focus, including the High Dispersion Spectograph, the 188-element Adaptive Optics system, the Infrared Camera and Spectrograph, and the High Contrast Instrument for the Subaru Next Generation Adaptive Optics, were all unaffected. With the cleaning of the mirror and the use of these instruments, the telescope was able to resume operations on the night of July 22.

With any luck, fortunes will continue to improve for Japan and their hard work and dedication can help them to overcome these issues. Ganbatte!

Equipment to Study Hayabusa’s Asteroid Samples Damaged in Japan Earthquake


The large particle accelerator being used in to analyze the asteroid samples returned by the Hayabusa spacecraft was damaged by the March 11 earthquake in Japan, but the high energy accelerator at the KEK particle-physics laboratory will be repaired, according to this report on a Japanese website. An announcement on the KEK website said that all accelerators and experimental devices were stopped immediately “after the first shake” of the historic earthquake. “We have confirmed the radiation safety, and no hazard to the environment has been reported,” the announcement said. “Also there are no reports of casualties on both Tsukuba and Tokai campuses.” Tsukuba is in the mid-latitudes of Japan, about 50 km from Tokyo.

Apparently, the tiny asteroid particles are safe, but an official at KEK was quoted as saying (via Google Translate) “The accelerator needs to be adjusted very precisely. To suffer this much, but it takes time to recover, want to lose to the earthquake recovery.”

But the repairs to the accelerator may take a back seat to the current situation in Japan. The city of Tsukuba is going to take in refugees from Fukushima prefecture, where the heavily damaged nuclear reactor is located and the KEK facilities will provide support for radiation screening for the refugees upon their arrival.

This photo shows some of the damage to the Tsukuba Space Center in Tsukuba, Japan, the main space center for the country's JAXA agency, from the 8.9-magnitude earthquake that struck on March 11, 2011. Credit:

Tsukuba is also home to the space center that oversees Japan’s Kibo laboratory on the International Space Station, as well the JAXA’s unmanned cargo ships that deliver supplies on orbit. The space center was slightly damaged, and for awhile NASA’s Mission Control in Houston took over operations remotely. According to Robert Pearlman on collectSPACE, several of the Japanese flight control team members and flight directors from the Tsukuba Space Center happened to be in Houston when the quake struck, preparing for the Expedition 27 crew rotation, as astronaut Satoshi Furukawa will be heading the ISS in May. However, operations from the mission control rooms were resumed at 4:00 p.m. on March 22, 2011.

JAXA Flight Control Team (JFCT) resuming the Kibo operations at the Mission Control Room (MCR). Credit: JAXA

Another center, the Kakuda Space Center, located in the Miyagi region close to the most serious effects of the earthquake and tsunami, was heavily damaged, and is closed with no timetable for reopening. The Kakuda center is JAXA’s rocket development and testing center and is Japan’s equivalent of the Stennis Space Center in Mississippi.

JAXA’s Tsukuba Space Center located in Tsukuba Science City,

Additionally, the ground-breaking ceremony for a new type of particle smasher known as a “super B factory” in Tsukuba has been postponed. Japan had invested $100 million to transform the KEKB collider in Tsukuba, into a Super KEKB, which will smash electrons into positrons at 40 times the rate of the current accelerator.
Just before the quake, the Japanese Space Agency JAXA had announced they are planning a second Hayabusa mission with an explosive twist. The second mission to an asteroid probe will include an impactor that detonates an explosive on the asteroid’s surface, similar to the Deep Impact mission.

The launch was tentatively planned for launch in 2014, heading to a space rock catalogued as 162173 1999 JU3. The probe would land on the surface and, collect samples before and after the impactor blasts its way to the asteroid’s interior.

Despite the problems Hayabusa encountered along its arduous journey to and from asteroid Itokawa –including thruster, communications, gyro and fuel-leak problems, as well as uncertainty whether the probe landed on the asteroid – JAXA and the Japanese people were buoyed by the success of Hayabusa.

It is not clear how the tragic earthquake and tsunami will affect future space missions for Japan, but obviously the country has more important issues ahead of them. May the spirit of the Japanese people be lifted again.

Sources: NHK,, KEK , collectSPACE, Moon and Back, JAXA

Hat tip to Emily Lakdawalla via Twitter.