If Black Holes Evaporate, Everything Evaporates

How virtual particles radiate away from any mass. Credit: Wondrak, et al

Hawking radiation is one of the most famous physical processes in astronomy. Through Hawking radiation, the mass, and energy of a black hole escape over time. It’s a brilliant theory, and it means that black holes have a finite lifetime. If Hawking radiation is true. Because as famous as it is, Hawking radiation is unproven. The theory is not even theoretically proven.

Continue reading “If Black Holes Evaporate, Everything Evaporates”

A new way to Confirm Hawking's Idea That Black Holes Give off Radiation

In honor of Dr. Stephen Hawking, the COSMOS center will be creating the most detailed 3D mapping effort of the Universe to date. Credit: BBC, Illus.: T.Reyes

Nothing can escape a black hole. General relativity is very clear on this point. Cross a black hole’s event horizon, and you are forever lost to the universe. Except that’s not entirely true. It’s true according to Einstein’s theory, but general relativity is a classical model. It doesn’t take into account the quantum aspects of nature. For that, you’d need a quantum theory of gravity, which we don’t have. But we do have some ideas about some of the effects of quantum gravity, and one of the most interesting is Hawking radiation.

Continue reading “A new way to Confirm Hawking's Idea That Black Holes Give off Radiation”

There are 6×10^80 Bits of Information in the Observable Universe

Since the beginning of the Digital Age (ca. the 1970s), theoretical physicists have speculated about the possible connection between information and the physical Universe. Considering that all matter is made up of information that describes the state of a quantum system (aka. quantum information), and genetic information is coded in our DNA, it’s not farfetched at all to think that physical reality can be expressed in terms of data.

This has led to many thought experiments and paradoxes, where researchers have attempted to estimate the information capacity of the cosmos. In a recent study, Dr. Melvin M. Vopson – a Mathematician and Senior Lecturer at Portsmouth University – offered new estimates of how much information is encoded in all the baryonic matter (aka. ordinary or “luminous” matter) in the Universe.

Continue reading “There are 6×10^80 Bits of Information in the Observable Universe”

We Knew Black Holes Have a Temperature. It Turns out They Also Have a Pressure

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

In the classical theory of general relativity, black holes are relatively simple objects. They can be described by just three properties: mass, charge, and rotation. But we know that general relativity is an incomplete theory. Quantum mechanics is most apparent in the behavior of tiny objects, but it also plays a role in large objects such as black holes. To describe black holes at a quantum level, we need a theory of quantum gravity. We don’t have a complete theory yet, but what know so far is that quantum mechanics makes black holes more complex, giving them properties such as temperature and perhaps even pressure.

Continue reading “We Knew Black Holes Have a Temperature. It Turns out They Also Have a Pressure”

Hawking Made a Prediction About Black Holes, and Physicists Just Confirmed it

Computer simulation of plasma near a black hole. Credit: Hotaka Shiokawa / EHT

On its own, a black hole is remarkably easy to describe. The only observable properties a black hole has are its mass, its electric charge (usually zero), and its rotation, or spin. It doesn’t matter how a black hole forms. In the end, all black holes have the same general structure. Which is odd when you think about it. Throw enough iron and rock together and you get a planet. Throw together hydrogen and helium, and you can make a star. But you could throw together grass cuttings, bubble gum, and old Harry Potter books, and you would get the same kind of black hole that you’d get if you just used pure hydrogen.

Continue reading “Hawking Made a Prediction About Black Holes, and Physicists Just Confirmed it”

A New Idea to Harness Energy From Black Holes

Credit: Francis Reddy/NASA GSFC

Fifty years ago, English mathematical physicist and Nobel-prize winner Roger Penrose proposed that energy could be extracted from the space around a rotating black hole. Known as the ergosphere, this region lies just outside an event horizon, the boundary within which nothing can escape a black hole’s gravitational pull (even light). It is also here where infalling matter is accelerated to incredible speeds and emits all kinds of energy.

This became known as the Penrose Process, which many theorists have since expanded on. The latest comes from a study conducted by researchers from Columbia University and the Universidad Adolfo Ibáñez in Chile. With support from organizations like NASA, they demonstrated how a better understanding of the physics at work around spinning black holes could allow us to harness their energy someday.

Continue reading “A New Idea to Harness Energy From Black Holes”

You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.
Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

Special Relativity. It’s been the bane of space explorers, futurists and science fiction authors since Albert Einstein first proposed it in 1905. For those of us who dream of humans one-day becoming an interstellar species, this scientific fact is like a wet blanket. Luckily, there are a few theoretical concepts that have been proposed that indicate that Faster-Than-Light (FTL) travel might still be possible someday.

A popular example is the idea of a wormhole: a speculative structure that links two distant points in space time that would enable interstellar space travel. Recently, a team of Ivy League scientists conducted a study that indicated how “traversable wormholes” could actually be a reality. The bad news is that their results indicate that these wormholes aren’t exactly shortcuts, and could be the cosmic equivalent of “taking the long way”!

Continue reading “You Could Travel Through a Wormhole, but it’s Slower Than Going Through Space”

Stephen Hawking has passed away at age 76

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp's modified Boeing 727 in 2007. Image: By Jim Campbell/Aero-News Network

Dr. Stephen Hawking, the famed British theoretical physicist, science communicator, author and luminary, passed away in the early hours on Wednesday, March 14th. According to a statement from his family, the renowned scientist died peacefully in his home at Cambridge. He was 76 years old, and is survived by his first wife, Jane Wilde, and their three children – Lucy, Robert and Tim.

Dr. Hawking spent the past 50 years living with a terminal illness that slowly deprived him of his speech and the use of much of his body. He also leaves behind an unparalleled scientific legacy and millions of people worldwide who admired him for his genius, his sense of humor, and the way he sought to educate people on the importance of scientific research, space exploration, and disability awareness.

In 1963, when he was just 21 years old, Dr. Hawking was diagnosed with Amyotrophic Lateral Sclerosis (ALS, aka. Lou Gehrig’s disease), a degenerative form of motor neurone disease that would be with him for the rest of his life. At the time, he was told that he had only two years to live. This diagnosis caused Dr. Hawking to fall into a depression and lose interest in his studies, which he was pursuing at Cambridge University at the time.

Stephen Hawking and Jane Wilde on their wedding day, July 14th, 1966. Credit: telegraph.co.uk

However, his outlook soon changed as the disease progressed slower than his doctor’s originally though. It was also around this time that Hawking met his first wife, Jane Wilde. The two became engaged in October of 1964 and married on July 14th, 1966. Hawking would later say that his relationship with Wilde gave him “something to live for”.

The slow progression of the disease also allowed Dr. Hawking to embark on a career marked by brilliance, brashness, and original thinking. Among his many achievements, Dr. Hawing was the Lucasian Professor of Mathematics at the University of Cambridge, the Founder of the Center for Theoretical Cosmology, and served as the Sally Tsui Wong-Avery Director of Research at the Department of Applied Mathematics and Theoretical Physics until his passing.

During his lifetime, Dr. Hawking made invaluable contributions to the fields of theoretical physics and cosmology. These include his extensive work on gravitational singularity theorems (in collaboration with Roger Penrose), the theory that black holes emit radiation (often called Hawking Radiation), and a theory of cosmology that attempted to unify general relativity and quantum mechanics (aka. Theory of Everything).

OPeter Higgs and Stephen Hawking visiting the “Collider” exhibition at London’s Science Museum (Image: c. Science Museum 2013)

His many accolades, honors and awards included being made an Honorary Fellow of the Royal Society of Arts (FRSA), a lifetime member of the Pontifical Academy of Sciences, and a recipient of the Presidential Medal of Freedom – the highest civilian award in the United States. In 2002, Hawking was ranked number 25 in the BBC’s poll of the 100 Greatest Britons.

The many books he penned include the best-selling A Brief History of Time, A Briefer History of Time, the essay collection Black Holes and Baby Universe, The Universe in a Nutshell, The Grand Design (which he co-authored with famed Caltech theoretical physicist and best-selling author Leonard Mlodinow) and his autobiography, My Brief History.

In 2007, Hawking and his daughter Lucy also published George’s Secret Key to the Universe, a children’s book designed to explain theoretical physics in an accessible fashion and featuring characters similar to those in the Hawking family. The book was followed by three sequels – George’s Cosmic Treasure Hunt (2009), George and the Big Bang (2011), George and the Unbreakable Code (2014).

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. (Official White House photo by Pete Souza)

In a statement by his three children, Lucy, Robert and Tim praised their father’s courage and persistence and honored how his genius and sense of humor inspired people all across the world:

“We are deeply saddened that our beloved father passed away today. He was a great scientist and an extraordinary man whose work and legacy will live on for many years… He once said, ‘It would not be much of a universe if it wasn’t home to the people you love.’ We will miss him forever.”

News of his passing was also met with a flurry of condolences by friends, colleagues, fans, and people whose lives he touched over the years. NASA tweeted the following early this morning, followed by a video of Dr. Hawking addressing the astronauts of the ISS in 2014:

https://twitter.com/NASA/status/973787392590172160?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Etweet

Famed scientists and science communicator Neil DeGrasse Tyson also expressed his condolences, tweeting:

The cast of the Big Bang Theory, one of the many hit TV shows that Dr. Hawking made several appearances on, also offered their condolences and admiration:

The Motor Neurone Disease Association – of which Prof Hawking had been a patron since 2008- also expressed condolences on both their Facebook and twitter feeds. In addition, they reported that its website had crashed because of an influx of donations to the charity.

Despite having lived for five decades with this degenerative disease, Hawking had a very practical and courageous attitude about life. In 2011, he said in an interview with The Guardian that death was never far from his mind. “I have lived with the prospect of an early death for the last 49 years,” he said. “I’m not afraid of death, but I’m in no hurry to die. I have so much I want to do first.”

Hawking, a well-known atheist, was also clear on his thoughts on an afterlife. “I regard the brain as a computer which will stop working when its components fail,” he said. “There is no heaven or afterlife for broken down computers; that is a fairy story for people afraid of the dark.”

Dr. Hawking’s life and his contributions to science have been commemorated in many ways over the years. A film version of A Brief History of Time, directed by Errol Morris and produced by Steven Spielberg, premiered in 1992.  In 1997, a six-part television series Stephen Hawking’s Universe premiered on PBS, with a companion book also being released. In 2014, the story of his diagnosis and the impact it had on his young family was showcased in the Oscar-winning film The Theory of Everything.

Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com

Dr. Hawking has also been a major role model for people dealing with disabilities and degenerative illnesses and played an unparalleled role when it came to disability awareness and outreach. In 1999, he and eleven other luminaries joined with Rehabilitation International , an organization founded in 1922 “To advance the rights and inclusion of persons with disabilities across the world.”

In 2000, Dr. Hawking and his fellow luminaries signed the Charter for the Third Millennium on Disability, which called on governments around the world to prevent disabilities and protect disability rights. Throughout his life, Dr. Hawking also remained a committed educator  – personally supervising 39 successful PhD students – and lending his voice to scientific and humanitarian goals.

These include Breakthrough Initiatives, an effort to search for extraterrestrial intelligence (SETI) in the Universe, which Dr. Hawking helped launch in 2015. That same year, he also used his influence and celebrity status to promote the The Global Goals, a series of 17 goals adopted by the United Nations Sustainable Development Summit to end extreme poverty, social inequality, and fixing climate change over the course of the next 15 years.

To commemorate his life and legacy, a book of condolence has been opened at Gonville and Caius College in Cambridge, where Prof Hawking was a fellow. All around the world, there are outpourings of remembrance and support for his family from people who are mourning Dr. Hawking’s passing and celebrating his life and achievements.

As Neil DeGrasse Tyson said, the death of Dr. Hawking has left a vacuum in the scientific community, and in the hearts of people everywhere. However, his life and his many contributions shall be remembered for a long time to come!

Further Reading: Stephen Hawking, BBC, The Guardian,

How Cold Are Black Holes?

How Cold Are Black Holes?

Today we’re going to have the most surreal conversation. I’m going to struggle to explain it, and you’re going to struggle to understand it. And only Stephen Hawking is going to really, truly, understand what’s actually going on.

But that’s fine, I’m sure he appreciates our feeble attempts to wrap our brains around this mind bending concept.

All right? Let’s get to it. Black holes again. But this time, we’re going to figure out their temperature.

The very idea that a black hole could have a temperature strains the imagination. I mean, how can something that absorbs all the matter and energy that falls into it have a temperature? When you feel the warmth of a toasty fireplace, you’re really feeling the infrared photons radiating from the fire and surrounding metal or stone.

And black holes absorb all the energy falling into them. There is absolutely no infrared radiation coming from a black hole. No gamma radiation, no radio waves. Nothing gets out.

As with most galaxies, a supermassive black hole lies at the heart of NGC 5548. Credit: ESA/Hubble and NASA. Acknowledgement: Davide de Martin

Now, supermassive black holes can shine with the energy of billions of stars, when they become quasars. When they’re actively feeding on stars and clouds of gas and dust. This material piles up into an accretion disk around the black hole with such density that it acts like the core of a star, undergoing nuclear fusion.

But that’s not the kind of temperature we’re talking about. We’re talking about the temperature of the black hole’s event horizon, when it’s not absorbing any material at all.

The temperature of black holes is connected to this whole concept of Hawking Radiation. The idea that over vast periods of time, black holes will generate virtual particles right at the edge of their event horizons. The most common kind of particles are photons, aka light, aka heat.

Normally these virtual particles are able to recombine and disappear in a puff of annihilation as quickly as they appear. But when a pair of these virtual particles appear right at the event horizon, one half of the pair drops into the black hole, while the other is free to escape into the Universe.

From your perspective as an outside observer, you see these particles escaping from the black hole. You see photons, and therefore, you can measure the temperature of the black hole.

PIA18919: How Black Hole Winds Blow (Artist's Concept)
Artist’s concept of the black hole at the center of the Pinwheel Galaxy. Credit: NASA/JPL-Caltech

The temperature of the black hole is inversely proportional to the mass of the black hole and the size of the event horizon. Think of it this way. Imagine the curved surface of a black hole’s event horizon. There are many paths that a photon could try to take to get away from the event horizon, and the vast majority of those are paths that take it back down into the black hole’s gravity well.

But for a few rare paths, when the photon is traveling perfectly perpendicular to the event horizon, then the photon has a chance to escape. The larger the event horizon, the less paths there are that a photon could take.

Since energy is being released into the Universe at the black hole’s event horizon, but energy can neither be created or destroyed, the black hole itself provides the mass that supplies the energy to release these photons.

The black hole evaporates.

The most massive black holes in the Universe, the supermassive black holes with millions of times the math of the Sun will have a temperature of 1.4 x 10^-14 Kelvin. That’s low. Almost absolute zero, but not quite.

Artist's impression of a feeding stellar-mass black hole. Credit: NASA, ESA, Martin Kornmesser (ESA/Hubble)
Artist’s impression of a feeding stellar-mass black hole. Credit: NASA, ESA, Martin Kornmesser (ESA/Hubble)

A solar mass black hole might have a temperature of only .0.00000006 Kelvin. We’re getting warmer.

Since these temperatures are much lower than the background temperature of the Universe – about 2.7 Kelvin, all the existing black holes will have an overall gain of mass. They’re absorbing energy from the Cosmic Background Radiation faster than they’re evaporating, and will for an incomprehensible amount of time into the future.

Until the background temperature of the Universe goes below the temperature of these black holes, they won’t even start evaporating.

A black hole with the mass of the Earth is still too cold.

Only a black hole with about the mass of the Moon is warm enough to be evaporating faster than it’s absorbing energy from the Universe.

As they get less massive, they get even hotter. A black hole with the mass of the asteroid Ceres would be 122 Kelvin. Still freezing, but getting warmer.

A black hole with half the mass of Vesta would blaze at more than 1,200 Kelvin. Now we’re cooking!

Less massive, higher temperatures.

When black holes have lost most of their mass, they release the final material in a tremendous blast of energy, which should be visible to our telescopes.

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
Artist’s conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

Some astronomers are actively searching the night sky for blasts from black holes which were formed shortly after the Big Bang, when the Universe was hot and dense enough that black holes could just form.

It took them billions of years of evaporation to get to the point that they’re starting to explode now.

This is just conjecture, though, no explosions have ever been linked to primordial black holes so far.

It’s pretty crazy to think that an object that absorbs all energy that falls into it can also emit energy. Well, that’s the Universe for you. Thanks for helping us figure it out Dr. Hawking.

Who was Stephen Hawking?

In honor of Dr. Stephen Hawking, the COSMOS center will be creating the most detailed 3D mapping effort of the Universe to date. Credit: BBC, Illus.: T.Reyes

When we think of major figures in the history of science, many names come to mind. Einstein, Newton, Kepler, Galileo – all great theorists and thinkers who left an indelible mark during their lifetime. In many cases, the full extent of their contributions would not be appreciated until after their death. But those of us that are alive today are fortunate to have a great scientist among us who made considerable contributions – Dr. Stephen Hawking.

Considered by many to be the “modern Einstein”, Hawking’s work in cosmology and theoretical physics was unmatched among his contemporaries. In addition to his work on gravitational singularities and quantum mechanics, he was also responsible for discovering that black holes emit radiation. On top of that, Hawking was a cultural icon, endorsing countless causes, appearing on many television shows as himself, and penning several books that have made science accessible to a wider audience.

Early Life:

Hawking was born on January 8th, 1942 (the 300th anniversary of the death of Galileo) in Oxford, England. His parents, Frank and Isobel Hawking, were both students at Oxford University, where Frank studied medicine and Isobel studied philosophy, politics and economics. The couple originally lived in Highgate, a suburb of London, but moved to Oxford to get away from the bombings during World War II and give birth to their child in safety. The two would go on to have two daughters, Philippa and Mary, and one adopted son, Edward.

The family moved again in 1950, this time to St. Albans, Hertfordshire, because Stephen’s father became the head of parasitology at the National Institute for Medical Research (now part of the Francis Crick Institute). While there, the family gained the reputation for being highly intelligent, if somewhat eccentric. They lived frugally, living in a large, cluttered and poorly maintained house, driving around in a converted taxicab, and constantly reading (even at the dinner table).

Stephen Hawking as a young man. Credit: gazettereview.com
Stephen Hawking as a young man. Credit: gazettereview.com

Education:

Hawking began his schooling at the Byron House School, where he experienced difficulty in learning to read (which he later blamed on the school’s “progressive methods”.) While in St. Albans, the eight-year-old Hawking attended St. Albans High School for Girls for a few months (which was permitted at the time for younger boys). In September of 1952, he was enrolled at Radlett School for a year, but would remain at St. Albans for the majority of his teen years due the family’s financial constraints.

While there, Hawking made many friends, with whom he played board games, manufactured fireworks, model airplanes and boats, and had long discussions with on subjects ranging from religion to extrasensory perception. From 1958, and with the help of the mathematics teacher Dikran Tahta, Hawking and his friends built a computer from clock parts, an old telephone switchboard and other recycled components.

Though he was not initially academically successfully, Hawking showed considerable aptitude for scientific subjects and was nicknamed “Einstein”. Inspired by his teacher Tahta, he decided to study mathematics at university. His father had hoped that his son would attend Oxford and study medicine, but since it was not possible to study math there at the time, Hawking chose to study physics and chemistry.

Stephen Hawking (holding the handkerchief) and the Oxford Boat Club. Credit: focusfeatures.com
Stephen Hawking (holding the handkerchief) and the Oxford Boat Club. Credit: focusfeatures.com

In 1959, when he was just 17, Hawking took the Oxford entrance exam and was awarded a scholarship. For the first 18 months, he was bored and lonely, owing to the fact that he was younger than his peers and found the work “ridiculously easy”. During his second and third year, Hawking made greater attempts to bond with his peers and developed into a popular student, joining the Oxford Boat Club and developing an interest in classical music and science fiction.

When it came time for his final exam, Hawking’s performance was lackluster. Instead of answering all the questions, he chose to focus on theoretical physics questions and avoided any that required factual knowledge. The result was a score that put him on the borderline between first- and second-class honors. Needing a first-class honors for his planned graduate studies in cosmology at Cambridge, he was forced to take a via (oral exam).

Concerned that he was viewed as a lazy and difficult student, Hawking described his future plans as follows during the viva: “If you award me a First, I will go to Cambridge. If I receive a Second, I shall stay in Oxford, so I expect you will give me a First.” However, Hawking was held in higher regard than he believed, and received a first-class BA (Hons.) degree, thus allowing him to pursue graduate work at Cambridge University in October 1962.

Hawking on graduation day in 1962. Credit: telegraph.co.uk
Hawking on graduation day in 1962. Credit: telegraph.co.uk

Hawking experienced some initial difficulty during his first year of doctoral studies. He found his background in mathematics inadequate for work in general relativity and cosmology, and was assigned Dennis William Sciama (one of the founders of modern cosmology) as his supervisor, rather than noted astronomer Fred Hoyle (whom he had been hoping for).

In addition, it was during his graduate studies that Hawking was diagnosed with early-onset amyotrophic lateral sclerosis (ALS). During his final year at Oxford, he had experienced an accident where he fell down a flight of stairs, and also began experiencing difficulties when rowing and incidents of slurred speech. When the diagnosis came in 1963, he fell into a state of depression and felt there was little point in continuing his studies.

However, his outlook soon changed, as the disease progressed more slowly than the doctors had predicted – initially, he was given two years to live. Then, with the encouragement of Sciama, he returned to his work, and quickly gained a reputation for brilliance and brashness. This was demonstrated when he publicly challenged the work of noted astronomer Fred Hoyle, who was famous for rejecting the Big Bang theory, at a lecture in June of 1964.

Stephen Hawking and Jane Wilde on their wedding day, July 14, 1966. Credit: telegraph.co.uk
Stephen Hawking and Jane Wilde on their wedding day, July 14, 1966. Credit: telegraph.co.uk

When Hawking began his graduate studies, there was much debate in the physics community about the prevailing theories of the creation of the universe: the Big Bang and the Steady State theories. In the former, the universe was conceived in a gigantic explosion, in which all matter in the known universe was created. In the latter, new matter is constantly created as the universe expands. Hawking quickly joined the debate.

Hawking became inspired by Roger Penrose’s theorem that a spacetime singularity – a point where the quantities used to measure the gravitational field of a celestial body become infinite – exists at the center of a black hole. Hawking applied the same thinking to the entire universe, and wrote his 1965 thesis on the topic. He went on to receive a research fellowship at Gonville and Caius College and obtained his PhD degree in cosmology in 1966.

It was also during this time that Hawking met his first wife, Jane Wilde. Though he had met her shortly before his diagnosis with ALS, their relationship continued to grow as he returned to complete his studies. The two became engaged in October of 1964 and were married on July 14th, 1966. Hawking would later say that his relationship with Wilde gave him “something to live for”.

Scientific Achievements:

In his doctoral thesis, which he wrote in collaboration with Penrose, Hawking extended the existence of singularities to the notion that the universe might have started as a singularity. Their joint essay – entitled, “Singularities and the Geometry of Space-Time” – was the runner-up in the 1968 Gravity Research Foundation competition and shared top honors with one by Penrose to win Cambridge’s most prestigious Adams Prize for that year.

In 1970, Hawking became part of the Sherman Fairchild Distinguished Scholars visiting professorship program, which allowed him to lecture at the California Institute of Technology (Caltech). It was during this time that he and Penrose published a proof that incorporated the theories of General Relativity and the physical cosmology developed by Alexander Freidmann.

Based on Einstein’s equations, Freidmann asserted that the universe was dynamic and changed in size over time. He also asserted that space-time had geometry, which is determined by its overall mass/energy density. If equal to the critical density, the universe has zero curvature (i.e. flat configuration); if it is less than critical, the universe has negative curvature (open configuration); and if greater than critical, the universe has a positive curvature (closed configuration)

According to the Hawking-Penrose singularity theorem, if the universe truly obeyed the models of general relativity, then it must have begun as a singularity. This essentially meant that, prior to the Big Bang, the entire universe existed as a point of infinite density that contained all of the mass and space-time of the universe, before quantum fluctuations caused it to rapidly expand.

Per the Friedmann equations, the geometry of the universe is determined by its overall mass/energy density. If equal to the critical density, ?0 the universe has zero curvature (flat configuration). If less than critical, the universe has negative curvature (open configuration). If greater than critical, the universe has positive curvature (closed configuration). Image credit: NASA/GSFC
Per the Friedmann equations, the geometry of the universe is determined by its overall mass/energy density, and can have either flat, negative, or positive curvature. Credit: NASA/GSFC

Also in 1970, Hawking postulated what became known as the second law of black hole dynamics. With James M. Bardeen and Brandon Carter, he proposed the four laws of black hole mechanics, drawing an analogy with the four laws of thermodynamics.

These four laws stated that – for a stationary black hole, the horizon has constant surface gravity; for perturbations of stationary black holes, the change of energy is related to change of area, angular momentum, and electric charge; the horizon area is, assuming the weak energy condition, a non-decreasing function of time; and that it is not possible to form a black hole with vanishing surface gravity.

In 1971, Hawking released an essay titled “Black Holes in General Relativity” in which he conjectured that the surface area of black holes can never decrease, and therefore certain limits can be placed on the amount of energy they emit. This essay won Hawking the Gravity Research Foundation Award in January of that year.

In 1973, Hawking’s first book, which he wrote during his post-doc studies with George Ellis, was published. Titled, The Large Scale Structure of Space-Time, the book describes the foundation of space itself and the nature of its infinite expansion, using differential geometry to examine the consequences of Einstein’s General Theory of Relativity.

Hawking was elected a Fellow of the Royal Society (FRS) in 1974, a few weeks after the announcement of Hawking radiation (see below). In 1975, he returned to Cambridge and was given a new position as Reader, which is reserved for senior academics with a distinguished international reputation in research or scholarship.

The mid-to-late 1970s was a time of growing interest in black holes, as well as the researchers associated with them. As such, Hawking’s public profile began to grow and he received increased academic and public recognition, appearing in print and television interviews and receiving numerous honorary positions and awards.

In the late 1970s, Hawking was elected Lucasian Professor of Mathematics at the University of Cambridge, an honorary position created in 1663 which is considered one of the most prestigious academic posts in the world. Prior to Hawking, its former holders included such scientific greats as Sir Isaac Newton, Joseph Larmor, Charles Babbage, George Stokes, and Paul Dirac.

His inaugural lecture as Lucasian Professor of Mathematics was titled: “Is the end in sight for Theoretical Physics”. During the speech, he proposed N=8 Supergravity – a quantum field theory which involves gravity in 8 supersymmetries – as the leading theory to solve many of the outstanding problems physicists were studying.

Hawking’s promotion coincided with a health crisis which led to Hawking being forced to accept some nursing services at home. At the same time, he began making a transition in his approach to physics, becoming more intuitive and speculative rather than insisting on mathematical proofs. By 1981, this saw Hawking begin to focus his attention on cosmological inflation theory and the origins of the universe.

Inflation theory – which had been proposed by Alan Guth that same year – posits that following the Big Bang, the universe initially expanded very rapidly before settling into to a slower rate of expansion. In response, Hawking presented work at the Vatican conference that year, where he suggested that their might be no boundary or beginning to the universe.

During the summer of 1982, he and his colleague Gary Gibbons organized a three-week workshop on the subject titled “The Very Early Universe” at Cambridge University. With Jim Hartle, an American physicist and professor of physics at the University of California, he proposed that during the earliest period of the universe (aka. the Planck epoch) the universe had no boundary in space time.

In 1983, they published this model, known as the Hartle-Hawking state. Among other things, it asserted that before the Big Bang, time did not exist, and the concept of the beginning of the universe is therefore meaningless. It also replaced the initial singularity of the Big Bang with a region akin to the North Pole which (similar to the real North Pole) one cannot travel north of because it is a point where lines meet that has no boundary.

This proposal predicted a closed universe, which had many existential implications, particularly about the existence of God. At no point did Hawking rule out the existence of God, choosing to use God in a metaphorical sense when explaining the mysteries of the universe. However, he would often suggest that the existence of God was unnecessary to explain the origin of the universe, or the existence of a unified field theory.

In 1982, he also began work on a book that would explain the nature of the universe, relativity and quantum mechanics in a way that would be accessible to the general public. This led him to sign a contract with Bantam Books for the sake of publishing A Brief History of Time, the first draft of which he completed in 1984.

After multiple revisions, the final draft was published in 1988, and was met with much critical acclaim. The book was translated into multiple languages, remained at the top of bestseller lists in both the US and UK for months, and ultimately sold an estimated 9 million copies. Media attention was intense, and Newsweek magazine cover and a television special both described him as “Master of the Universe”.

Further work by Hawking in the area of arrows of time led to the 1985 publication of a paper theorizing that if the no-boundary proposition were correct, then when the universe stopped expanding and eventually collapsed, time would run backwards. He would later withdraw this concept after independent calculations disputed it, but the theory did provide valuable insight into the possible connections between time and cosmic expansion.

During the 1990’s, Hawking continued to publish and lecture on his theories regarding physics, black holes and the Big Bang. In 1993, he co-edited a book with Gary Gibbons on on Euclidean quantum gravity, a theory they had been working on together in the late 70s. According to this theory, a section of a gravitational field in a black hole can be evaluated using a functional integral approach, such that it can avoid the singularities.

That same year, a popular-level collection of essays, interviews and talks titled, Black Holes and Baby Universes and Other Essays was also published. In 1994, Hawking and Penrose delivered a series of six lectures at Cambridge’s Newton Institute, which were published in 1996 under the title “The Nature of Space and Time“.

It was also in 1990s that major developments happened in Hawking’s personal life. In 1990, he and Jane Hawking commenced divorce proceedings after many years of strained relations, owing to his disability, the constant presence of care-givers, and his celebrity status. Hawking remarried in 1995 to Elaine Mason, his caregiver of many years.

Stephen Hawking lectured regularly throughout the 90s and 2000s. Credit: educatinghumanity.com
Stephen Hawking lectured regularly throughout the 90s, many of which were collected and published in “The Nature of Space and Time” in 1996. Credit: educatinghumanity.com

In the 2000s, Hawking produced many new books and new editions of older ones. These included The Universe in a Nutshell (2001), A Briefer History of Time (2005), and God Created the Integers (2006). He also began collaborating with Jim Hartle of the University of California, Santa Barbara, and the European Organization for Nuclear Research (CERN) to produce new cosmological theories.

Foremost of these was Hawking’s “top-down cosmology”, which states that the universe had not one unique initial state but many different ones, and that predicting the universe’s current state from a single initial state is therefore inappropriate. Consistent with quantum mechanics, top-down cosmology posits that the present “selects” the past from a superposition of many possible histories.

In so doing, the theory also offered a possible resolution of the “fine-tuning question”, which addresses the possibility that life can only exist when certain physical constraints lie within a narrow range. By offering this new model of cosmology, Hawking opened up the possibility that life may not be bound by such restrictions and could be much more plentiful than previously thought.

In 2006, Hawking and his second wife, Elaine Mason, quietly divorced, and Hawking resumed closer relationships with his first wife Jane, his children (Robert, Lucy and Timothy), and grandchildren. In 2009, he retired as Lucasian Professor of Mathematics, which was required by Cambridge University regulations. Hawking has continued to work as director of research at the Cambridge University Department of Applied Mathematics and Theoretical Physics ever since, and has made no indication of retiring.

“Hawking Radiation” and the “Black Hole Information Paradox”:

In the early 1970s, Hawking’s began working on what is known as the “no-hair theorem”. Based on the Einstein-Maxwell equations of gravitation and electromagnetism in general relativity, the theorem stated that all black holes can be completely characterized by only three externally observable classical parameters: mass, electric charge, and angular momentum.

In this scenario, all other information about the matter which formed a black hole or is falling into it (for which “hair’ is used as a metaphor), “disappears” behind the black-hole event horizon, and is therefore preserved but permanently inaccessible to external observers.

In 1973, Hawking traveled to Moscow and met with Soviet scientists Yakov Borisovich Zel’dovich and Alexei Starobinsky. During his discussions with them about their work, they showed him how the uncertainty principle demonstrated that black holes should emit particles. This contradicted Hawking’ second law of black hole thermodynamics (i.e. black holes can’t get smaller) since it meant that by losing energy they must be losing mass.

What’s more, it supported a theory advanced by Jacob Bekenstein, a graduate student of John Wheeler University, that black holes should have a finite, non-zero temperature and entropy. All of this contradicted the “no-hair theorem” about black boles. Hawking revised this theorem shortly thereafter, showing that when quantum mechanical effects are taken into account, one finds that black holes emit thermal radiation at a temperature.

From 1974 onward, Hawking presented Bekenstein’s results, which showed that black holes emit radiation. This came to be known as “Hawking radiation”, and was initially controversial. However, by the late 1970s and following the publication of further research, the discovery was widely accepted as a significant breakthrough in theoretical physics.

However, one of the outgrowths of this theory was the likelihood that black holes gradually lose mass and energy. Because of this, black holes that lose more mass than they gain through other means are expected to shrink and ultimately vanish – a phenomena which is known as black hole “evaporation”.

In 1981, Hawking proposed that information in a black hole is irretrievably lost when a black hole evaporates, which came to be known as the “Black Hole Information Paradox”. This states that physical information could permanently disappear in a black hole, allowing many physical states to devolve into the same state.

This was controversial because it violated two fundamental tenets of quantum physics. In principle, quantum physics tells us that complete information about a physical system – i.e. the state of its matter (mass, position, spin, temperature, etc.) – is encoded in its wave function up to the point when that wave function collapses. This in turn gives rise to two other principles.

The first is Quantum Determinism, which states that – given a present wave function – future changes are uniquely determined by the evolution operator. The second is Reversibility, which states that the evolution operator has an inverse, meaning that the past wave functions are similarly unique. The combination of these means that the information about the quantum state of matter must always be preserved.

By proposing that this information disappears once a black evaporates, Hawking essentially created a fundamental paradox. If a black hole can evaporate, which causes all the information about a quantum wave function to disappear, than information can in fact be lost forever. This has been the subject of ongoing debate among scientists, one which has remained largely unresolved.

However, by 2003, the growing consensus among physicists was that Hawking was wrong about the loss of information in a black hole. In a 2004 lecture in Dublin, he conceded his bet with fellow John Preskill of Caltech (which he made in 1997), but described his own, somewhat controversial solution to the paradox problem – that black holes may have more than one topology.

In the 2005 paper he published on the subject – “Information Loss in Black Holes” – he argued that the information paradox was explained by examining all the alternative histories of universes, with the information loss in those with black holes being cancelled out by those without. As of January 2014, Hawking has described the Black Hole Information Paradox as his “biggest blunder”.

Other Accomplishments:

In addition to advancing our understanding of black holes and cosmology through the application of general relativity and quantum mechanics, Stephen Hawking has also been pivotal in bringing science to a wider audience. Over the course of his career, he has published many popular books, traveled and lectured extensively, and has made numerous appearances and done voice-over work for television shows, movies and even provided narration for the Pink Floyd song, “Keep Talking”.

Stephen Hawking's theories on black holes became the subject of many television specials, such as . Credit: discovery.com
Stephen Hawking’s theories on black holes became the subject of television specials, such as “Stephen Hawking’s Universe” on PBS. Credit: discovery.com

A film version of A Brief History of Time, directed by Errol Morris and produced by Steven Spielberg, premiered in 1992. Hawking had wanted the film to be scientific rather than biographical, but he was persuaded otherwise. In 1997, a six-part television series Stephen Hawking’s Universe premiered on PBS, with a companion book also being released.

In 2007, Hawking and his daughter Lucy published George’s Secret Key to the Universe, a children’s book designed to explain theoretical physics in an accessible fashion and featuring characters similar to those in the Hawking family. The book was followed by three sequels – George’s Cosmic Treasure Hunt (2009), George and the Big Bang (2011), George and the Unbreakable Code (2014).

Since the 1990s, Hawking has also been a major role model for people dealing with disabilities and degenerative illnesses, and his outreach for disability awareness and research has been unparalleled. At the turn of the century, he and eleven other luminaries joined with Rehabilitation International to sign the Charter for the Third Millennium on Disability, which called on governments around the world to prevent disabilities and protect disability rights.

Professor Stephen Hawking during a zero-gravity flight. Image credit: Zero G.
Professor Stephen Hawking participating in a zero-gravity flight (aka. the “Vomit Comet”) in 2007. Credit: gozerog.com

Motivated by the desire to increase public interest in spaceflight and to show the potential of people with disabilities, in 2007 he participated in zero-gravity flight in a “Vomit Comet” – a specially fitted aircraft that dips and climbs through the air to simulate the feeling of weightlessness – courtesy of Zero Gravity Corporation, during which he experienced weightlessness eight times.

In August 2012, Hawking narrated the “Enlightenment” segment of the 2012 Summer Paralympics opening ceremony. In September of 2013, he expressed support for the legalization of assisted suicide for the terminally ill. In August of 2014, Hawking accepted the Ice Bucket Challenge to promote ALS/MND awareness and raise contributions for research. As he had pneumonia in 2013, he was advised not to have ice poured over him, but his children volunteered to accept the challenge on his behalf.

During his career, Hawking has also been a committed educator, having personally supervised 39 successful PhD students.He has also lent his name to the ongoing search for extra-terrestrial intelligence and the debate regarding the development of robots and artificial intelligence. On July 20th, 2015, Stephen Hawking helped launch Breakthrough Initiatives, an effort to search for extraterrestrial life in the universe.

Also in 2015, Hawking lent his voice and celebrity status to the promotion of The Global Goals, a series of 17 goals adopted by the United Nations Sustainable Development Summit to end extreme poverty, social inequality, and fixing climate change over the course of the next 15 years.

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. The Medal of Freedom is the nation's highest civilian honor. (Official White House photo by Pete Souza)
President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12th, 2009. Credit: Pete Souza/White House photo stream

Honors and Legacy:

As already noted, in 1974, Hawking was elected a Fellow of the Royal Society (FRS), and was one of the youngest scientists to become a Fellow. At that time, his nomination read:

Hawking has made major contributions to the field of general relativity. These derive from a deep understanding of what is relevant to physics and astronomy, and especially from a mastery of wholly new mathematical techniques. Following the pioneering work of Penrose he established, partly alone and partly in collaboration with Penrose, a series of successively stronger theorems establishing the fundamental result that all realistic cosmological models must possess singularities. Using similar techniques, Hawking has proved the basic theorems on the laws governing black holes: that stationary solutions of Einstein’s equations with smooth event horizons must necessarily be axisymmetric; and that in the evolution and interaction of black holes, the total surface area of the event horizons must increase. In collaboration with G. Ellis, Hawking is the author of an impressive and original treatise on “Space-time in the Large.

Other important work by Hawking relates to the interpretation of cosmological observations and to the design of gravitational wave detectors.

On 12 November Peter Higgs and Stephen Hawking visited the "Collider" exhibition at London's Science Museum (Image: c. Science Museum 2013)
Peter Higgs and Stephen Hawking visiting the “Collider” exhibition at London’s Science Museum in 2013, in honor of the discovery of the Higgs Boson. Credit: sciencemuseum.org.uk

In 1975, he was awarded both the Eddington Medal and the Pius XI Gold Medal, and in 1976 the Dannie Heineman Prize, the Maxwell Prize and the Hughes Medal. In 1977, he was appointed a professor with a chair in gravitational physics, and received the Albert Einstein Medal and an honorary doctorate from the University of Oxford by the following year.

In 1981, Hawking was awarded the American Franklin Medal, followed by a Commander of the Order of the British Empire (CBE) medal the following year. For the remainder of the decade, he was honored three times, first with the Gold Medal of the Royal Astronomical Society in 1985, the Paul Dirac Medal in 1987 and, jointly with Penrose, with the prestigious Wolf Prize in 1988. In 1989, he was appointed Member of the Order of the Companions of Honour (CH), but reportedly declined a knighthood.

In 1999, Hawking was awarded the Julius Edgar Lilienfeld Prize of the American Physical Society. In 2002, following a UK-wide vote, the BBC included him in their list of the 100 Greatest Britons. More recently, Hawking has been awarded the Copley Medal from the Royal Society (2006), the Presidential Medal of Freedom, America’s highest civilian honor (2009), and the Russian Special Fundamental Physics Prize (2013).

Several buildings have been named after him, including the Stephen W. Hawking Science Museum in San Salvador, El Salvador, the Stephen Hawking Building in Cambridge, and the Stephen Hawking Center at Perimeter Institute in Canada. And given Hawking’s association with time, he was chosen to unveil the mechanical “Chronophage” – aka. the Corpus Clock – at Corpus Christi College Cambridge in September of 2008.

Stephen Hawking being presented by his daughter Lucy Hawking at the lecture he gave for NASA's 50th anniversary. Credit: NASA/Paul Alers
Stephen Hawking being presented by his daughter Lucy Hawking at the lecture he gave for NASA’s 50th anniversary. Credit: NASA/Paul Alers

Also in 2008, while traveling to Spain, Hawking received the Fonseca Prize – an annual award created by the University of Santiago de Compostela which is awarded to those for outstanding achievement in science communication. Hawking was singled out for the award because of his “exceptional mastery in the popularization of complex concepts in Physics at the very edge of our current understanding of the Universe, combined with the highest scientific excellence, and for becoming a public reference of science worldwide.”

Multiple films have been made about Stephen Hawking over the years as well. These include the previously mentioned A Brief History of Time, the 1991 biopic film directed by Errol Morris and Stephen Spielberg; Hawking, a 2004 BBC drama starring Benedict Cumberbatch in the title role; the 2013 documentary titled “Hawking”, by Stephen Finnigan.

Most recently, there was the 2014 film The Theory of Everything that chronicled the life of Stephen Hawking and his wife Jane. Directed by James Marsh, the movie stars Eddie Redmayne as Professor Hawking and Felicity Jones as Jane Hawking.

Death:

Dr. Stephen Hawking passed away in the early hours of Wednesday, March 14th, 2018 at his home in Cambridge. According to a statement made by his family, he died peacefully. He was 76 years old, and is survived by his first wife, Jane Wilde, and their three children – Lucy, Robert and Tim.

When all is said and done, Stephen Hawking was the arguably the most famous scientist alive in the modern era. His work in the field of astrophysics and quantum mechanics has led to a breakthrough in our understanding of time and space, and will likely be poured over by scientists for decades. In addition, he has done more than any living scientist to make science accessible and interesting to the general public.

Stephen Hawking holding a public lecture at the Stockholm Waterfront congress center, 24 August 2015. Credit: Public Domain/photo by Alexandar Vujadinovic
Stephen Hawking holding a public lecture at the Stockholm Waterfront congress center, 24 August 2015. Credit: Public Domain/photo by Alexandar Vujadinovic

To top it off, he traveled all over the world and lectured on topics ranging from science and cosmology to human rights, artificial intelligence, and the future of the human race. He also used the celebrity status afforded him to advance the causes of scientific research, space exploration, disability awareness, and humanitarian causes wherever possible.

In all of these respects, he was very much like his predecessor, Albert Einstein – another influential scientist-turned celebrity who was sure to use his powers to combat ignorance and promote humanitarian causes. But what was  especially impressive in all of this is that Hawking has managed to maintain his commitment to science and a very busy schedule while dealing with a degenerative disease.

For over 50 years, Hawking lived with a disease that doctor’s initially thought would take his life within just two. And yet, he not only managed to make his greatest scientific contributions while dealing with ever-increasing problems of mobility and speech, he also became a jet-setting personality who travelled all around the world to address audiences and inspire people.

His passing was mourned by millions worldwide and, in the worlds of famed scientist and science communicator Neil DeGrasse Tyson , “left an intellectual vacuum in its wake”. Without a doubt, history will place Dr. Hawking among such luminaries as Einstein, Newton, Galileo and Curie as one of the greatest scientific minds that ever lived.

We have many great articles about Stephen Hawking here at Universe Today. Here is one about Hawking Radiation, How Do Black Holes Evaporate?, why Hawking could be Wrong About Black Holes, and recent experiments to Replicate Hawking Radiation in a Laboratory.

And here are some video interviews where Hawking addresses how God is not necessary for the creation of the Universe, and the trailer for Theory of Everything.

Astronomy Cast has a number of great podcasts that deal with Hawing and his discoveries, like: Episode 138: Quantum Mechanics, and Questions Show: Hidden Fusion, the Speed of Neutrinos, and Hawking Radiation.

For more information, check out Stephen Hawking’s website, and his page at Biography.com