Did We Arrive Early To The Universe’s Life Party?

Artist's impression of an exoplanet orbiting a low-mass star. Credit: ESO/L. Calçada

The Fermi Paradox essentially states that given the age of the Universe, and the sheer number of stars in it, there really ought to be evidence of intelligent life out there. This argument is based in part on the fact that there is a large gap between the age of the Universe (13.8 billion years) and the age of our Solar System (4.5 billion years ago). Surely, in that intervening 9.3 billion years, life has had plenty of time to evolve in other star system!

Continue reading “Did We Arrive Early To The Universe’s Life Party?”

More livable than Earth? New index sizes up the habitability of alien exoplanets

Image: James Webb Space Telescope
NASA's James Webb Telescope, shown in this artist's conception, will provide more information about previously detected exoplanets. Beyond 2020, many more next-generation space telescopes are expected to build on what it discovers. Credit: NASA

Researchers at the University of Washington’s Virtual Planetary Laboratory have devised a new habitability index for judging how suitable alien planets might be for life, and the top prospects on their list are an Earthlike world called Kepler-442b and a yet-to-be confirmed planet known as KOI 3456.02.

Those worlds both score higher than our own planet on the index: 0.955 for KOI 3456.02 and 0.836 for Kepler-442b, compared with 0.829 for Earth and 0.422 for Mars. The point of the exercise is to help scientists prioritize future targets for close-ups from NASA’s yet-to-be-launched James Webb Space Telescope and other instruments.

Astronomers have detected more than 1,000 confirmed planets and almost 5,000 candidates beyond our solar system, with most of them found by NASA’s Kepler Space Telescope. More than 100 of those have been characterized as potentially habitable, and hundreds more are thought to be waiting in the wings. The Webb telescope is expected to start taking a closer look soon after its scheduled launch in 2018.

“Basically, we’ve devised a way to take all the observational data that are available and develop a prioritization scheme,” UW astronomer Rory Barnes said Monday in a news release, “so that as we move into a time when there are hundreds of targets available, we might be able to say, ‘OK, that’s the one we want to start with.'”

This isn’t the first habitability index to be devised. Traditionally, astronomers focus on how close a particular exoplanet’s mass is to Earth’s, and whether its orbit is in a “Goldilocks zone” where water could exist in liquid form. But in a paper accepted for publication in the Astrophysical Journal, Barnes and his colleagues say their scheme includes other factors such as a planet’s estimated rockiness and the eccentricity of its orbit.

The formula could be tweaked even further in the future. “The power of the habitability index will grow as we learn more about exoplanets from both observations and theory,” said study co-author Victoria Meadows.

Barnes, Meadows and UW research assistant Nicole Evans are the authors of “Comparative Habitability of Transiting Exoplanets.” The study was funded by the NASA Astrobiology Institute.

Planet Earth

Blue marble Earth. Image credit: NASA

In addition to being the birthplace of humanity and the cradle of human civilization, Earth is the only known planet in our Solar System that is capable of sustaining life. As a terrestrial planet, Earth is located within the Inner Solar System between between Venus and Mars (which are also terrestrial planets). This place Earth in a prime location with regards to our Sun’s Habitable Zone.

Earth has a number of nicknames, including the Blue Planet, Gaia, Terra, and “the world” – which reflects its centrality to the creation stories of every single human culture that has ever existed. But the most remarkable thing about our planet is its diversity. Not only are there an endless array of plants, animals, avians, insects and mammals, but they exist in every terrestrial environment. So how exactly did Earth come to be the fertile, life-giving place we all know and love?

Continue reading “Planet Earth”

There Might Be 100 Million Planets In The Galaxy With Complex Life

Artist's impression of complex life on other worlds. Credit: PHL @ UPR Arecibo, NASA, Richard Wheeler @Zephyris

What a multitude of worlds! A new study suggests that the Milky Way could host 100 million planets with complex life, leaving no lack of choice for astronomers to look for organisms beyond Earth. The challenge is, however, that these worlds might be too far away from us to do much yet.

“On the one hand, it seems highly unlikely that we are alone,” stated Louis Irwin, lead author of the study and professor emeritus at the University of Texas at El Paso. “On the other hand, we are likely so far away from life at our level of complexity, that a meeting with such alien forms is extremely improbable for the foreseeable future.”

The figure came from studying a list of more than 1,000 exoplanets for metrics such as their density, temperature, chemistry, age and distance from the parent star. From this, Irwin’s team formulated a “biological complexity index” that ranges between 0 and 1.0. The index is rated on “the number and degree of characteristics assumed to be important for supporting multiple forms of multicellular life,” the research team stated.

Assuming that Europa (a moon of Jupiter believed to have an ocean below its ice) is a good candiate for life, the team estimated that 1% to 2% of exoplanets would have a BCI that is even higher than that. So to translate that into some estimates: 10 billion stars in the Milky Way, averaging one planet a star, which brings us to 100 million planets minimum.

Goldilocks Zone
Artists impression of Gliese 581g. Credit: Lynette Cook/NSF

So what does this metric mean? There’s of course no guarantee that complex life exists in any of these places — just that the conditions could be conducive to life. Also, the researchers added, don’t assume that any life in this category would be intelligent life, but more life that is more complex than a microbe. And the known planets with higher BCIs tend to be pretty far away from us. (One of the closest is the Gliese 581 system, which is 20 light-years away.)

Read more about the research in the journal Challenges. Recall that a few years ago, this group also wrote about an “Earth Similarity Index” rating exoplanets on how close they are to our own.

“Planets with the highest BCI values tend to be larger, warmer, and older than Earth,” added Irwin, “so any search for complex or intelligent life that is restricted just to Earth-like planets, or to life as we know it on Earth, will probably be too restrictive.”

Source: Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo

Mercury’s Resonant Rotation ‘Should Be Common’ In Alien Planets

A global view of Mercury, as seen by MESSENGER. Credit: NASA

Three to two. That’s the ratio of the time it takes Mercury to go around the sun (88 days) in relation to its rotation (58 days). This is likely due to the influence of the Sun’s immense gravity on the planet. A new study confirms that finding, while stating something even more interesting: other star systems could see the same type of resonance.

Hundreds of confirmed exoplanets have been found so far, many of them in very tight configurations, the authors said. “Mercury-like states should be common among the hundreds of discovered and confirmed exoplanets, including potentially habitable super-Earths orbiting M-dwarf [red dwarf] stars,” they added. “The results of this investigation provide additional insight into the possibilities of known exoplanets to support extraterrestrial life.”

Habitability, of course, depends on many metrics. What kind of star is in the system, and how stable is it? How far away are the planets from the star? What is the atmosphere of the planet like? And as this study points out, what about if one side of the planet is tidally locked to its star and spends most or all of its time with one side facing the starshine?

Additionally, the study came up with an explanation as to why Mercury remains in a 3:2 orbit in opposition to, say, the Moon, which always has one side facing the Earth. The study took into account factors such as internal friction and a tidal “bulge” that makes Mercury appear slightly misshapen (and which could slow it down even further.) Basically, it has to do with Mercury’s early history.

From Orbit, Looking toward Mercury's Horizon. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
From Orbit, Looking toward Mercury’s Horizon. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“Among the implications of the released study are, to name a few, a fast tidal spin-down, a relatively cold (i.e., not fully molten) state of the planet at the early stages of its life, and a possibility that the internal segregation and formation of the massive liquid core happened after Mercury’s capture into the resonance,” the press release added.

The results were presented today (Oct. 7) at the American Astronomical Society department of planetary sciences meeting held in Denver. A press release did not make clear if the study has been submitted for peer review or published.

Source: AAS Division of Planetary Sciences

Possible Subterranean Life Means More Exoplanets Could Harbor Life

Artistic representations of the only known planets around other stars (exoplanets) with any possibility to support life as we know it. Credit: Planetary Habitability Laboratory, University of Puerto Rico, Arecibo.

Artistic representation of the current five known potential habitable worlds. Will this list broaden under a new habitability model? Credit: The Planetary Habitability Laboratory (PHL)

When we think of life on other planets, we tend to imagine things (microbes, plant life and yes, humanoids) that exist on the surface. But Earth’s biosphere doesn’t stop at the planet’s surface, and neither would life on another world, says a new study that expands the so-called ‘Goldilocks Zone’ to include the possibility of subterranean habitable zones. This new model of habitability could vastly increase where we could expect to find life, as well as potentially increasing the number of habitable exoplanets.

We know that a large fraction of the Earth’s biomass is dwelling down below, and recently microbiologists discovered bacterial life, 1.4 kilometers below the sea floor in the North Atlantic, deeper in the Earth’s crust than ever before. This and other drilling projects have brought up evidence of hearty microbes thriving in deep rock sediments. Some derive energy from chemical reactions in rocks and others feed on organic seepage from life on the surface. But most life requires at least some form of water.

“Life ‘as we know it’ requires liquid water,” said Sean McMahon, a PhD student from the University of Aberdeen’s (Scotland) School of Geosciences. “Traditionally, planets have been considered ‘habitable’ if they are in the ‘Goldilocks zone’. They need to be not too close to their sun but also not too far away for liquid water to persist, rather than boiling or freezing, on the surface. However, we now know that many micro-organisms—perhaps half of all living things on Earth—reside deep in the rocky crust of the planet, not on the surface.”

Location in the night sky of the stars with potential habitable exoplanets (red circles). There are two in Gliese 581. Click the image for larger version. CREDIT: PHL @ UPR Arecibo and Jim Cornmell.

While suns warm planet surfaces, there’ also heat from the planets’ interiors. Crust temperature increases with depth so planets that are too cold for liquid water on the surface may be sufficiently warm underground to support life.

“We have developed a new model to show how ‘Goldilocks zones’ can be calculated for underground water and hence life,” McMahon said. “Our model shows that habitable planets could be much more widespread than previously thought.”

In the past, the Goldilocks zone has really been determined by a circumstellar habitable zone (CHZ), which is a range of distances from a star, and depending on the star’s characteristics, the zone varies. The consensus has been that planets that form from Earth-like materials within a star’s CHZ are able to maintain liquid water on their surfaces.
But McMahon and his professor, John Parnell, also from Aberdeen University who is leading the study now are introducing a new term: subsurface-habitability zone (SSHZ). This denote the range of distances from a star within which planets are habitable at any depth below their surfaces up to a certain maximum, for example, they mentioned a “SSHZ for 2 km depth”, within which planets can support liquid water 2 km or less underground.

If this notion catches on – which it should – it will have exoplanet hunters recalculating the amount of potentially habitable worlds.

The research was presented at the annual British Science Festival in Aberdeen.

Source: University of Aberdeen

See also: The Habitable Exoplanets Catalogue from the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo.

Exoplanet Gliese 581g Makes the Top 5

Exoplanet Gliese 581g is back, and “officially” ranking #1 on a list of potentially habitable worlds outside of our solar system thanks to new research from the team that originally announced its discovery in 2010.

Orbiting a star 20 light-years away, the super-Earth is now listed alongside other exoplanets Gliese 667Cc, Kepler-22b, HD85512 and Gliese 581d in the University of Puerto Rico at Arecibo’s Habitable Exoplanets Catalog as good places to look for Earthlike environments… and thus the possibility of life.

First announced in September 2010 by a team led by Steven S. Vogt of UC Santa Cruz, the presence of Gliese 581g was immediately challenged by other astronomers whose data didn’t support its existence. Vogt’s team conducted further analysis of the Gliese system in which it appeared that the orbits of the planets were circular, rather than elliptical, and it was in this type of scenario that a strong signal for Gliese 581g once again appeared.

Read: Could Chance For Life on Gliese 581g Actually Be “100%”?

“This signal has a False Alarm Probability of < 4% and is consistent with a planet of minimum mass 2.2M [Earth masses], orbiting squarely in the star’s Habitable Zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibility” said Vogt.

And, located near the center of its star’s habitable “Goldilocks” zone and receiving about the same relative amount of light as Earth does, Gliese 581 g isn’t just on the list… it’s now considered the best candidate for being an Earthlike world — knocking previous favorite Gliese 667Cc into second place.

Read: Billions of Habitable Worlds Likely in the Milky Way

The announcement was made on the PHL’s press site earlier today by Professor Abel Méndez, Director of the PHL at UPR Arecibo.

Diagram of the Gliese system. The green area is the habitable zone, where liquid water can exist on a planet’s surface. (PHL @ UPR Arecibo)

“The controversy around Gliese 581g will continue and we decided to include it to our main catalog based on the new significant evidence presented, and until more is known about the architecture of this interesting stellar system”

– Prof. Abel Méndez, UPR Arecibo

Coming To A Solar System Near You… Super-Earth!

Planetary system of HR 8799 imaged by Marois et al (2010). The central star is of spectral type A with a mass of 1.5 solar-masses at a distance of 128 light-years from the Sun. The planets have the masses of Mb = 7MJ , Mc = Md = 10MJ , and Me = (7?10)MJ , with semimajor axes of 68, 38, 24, and 14.5 AU, respectively. Figure with the permission of NPG.

[/caption]

It is our general understanding of solar system composition that planets fall into two categories: gas giants like Jupiter, Saturn, Neptune and Uranus… and rocky bodies that support some type of atmosphere like Earth, Mars and Venus. However, as we reach further into space we’re beginning to realize the Solar System is pretty unique because it doesn’t have a planetary structure which meets in the middle. But just because we don’t have one doesn’t mean they don’t exist. As a matter of fact, astronomers have found more than 30 of them and they call this new class of planet a “Super-Earth”.

“Super-Earths, a class of planetary bodies with masses ranging from a few Earth-masses to slightly smaller than Uranus, have recently found a special place in the exoplanetary science.” says Nader Haghighipour of the Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii. “Being slightly larger than a typical terrestrial planet, super-Earths may have physical and dynamical characteristics similar to those of Earth whereas unlike terrestrial planets, they are relatively easier to detect.”

Having a super-Earth in the neighborhood opens the avenue towards habitability. Chances are planets of this type have a dynamic core and are able to maintain a type of atmosphere. When combined with being within the habitable zone of a host star, this raises the bar towards possible life on other planets.

“It is important to note that the notion of habitability is defined based on the life as we know it. Since Earth is the only habitable planet known to humankind, the orbital and physical characteristics of Earth are used to define a habitable planet.” says Haghighipour. “In other words, habitability is the characteristic of an environment which has similar properties as those of Earth, and the capability of developing and sustaining Earthly life.”

But being a super-Earth means that there is a lot more going on than just being in the zone. To qualify it must meet three requirements: its composition, the manifestation of plate tectonics, and the presence of a magnetic field. For the first, the presence of liquid water is a high priority. In order to determine this possibility the values of its mass and radius have to be known. To date, two super-Earth planets for which these values have been determined – CoRoT-7b and GJ 1214b – have given us fascinating numerical modeling to help us better understand their composition. Plate tectonics also plays a role through geophysical evolution – just as the presence of a magnetic field has been considered essential for habitability.

“Whether and how magnetic fields are developed around super-Earths is an active topic of research.” notes Haghighipour. “In general, in order for a magnetic field to be in place around an Earth-like planet, a dynamo action has to exist in the planet’s core.”

Last, but not least, comes an atmosphere – the “presence of which has profound effects on its capability in developing and maintaining life.” From its chemical properties we can derive the “planet’s possible biosignatures” as well as the chemicals which formed it. Atmosphere means environment and all of this leads back to being within a habitable zone and of sufficient gravity to keep atmospheric molecules from escaping. Says Haghighipour, “It would not be unrealistic to assume that super-Earths carry gaseous envelopes. Around low-mass stars, some of such atmosphere-bearing super-Earths may even have stable orbits in the habitable zones of their host stars.”

Has a super-Earth been detected? You betcha’… and studied right down to its spectral signature. “The recently detected super-Earth GL 581 g with its possible atmospheric circulation in the habitable zone of its host star may in fact be one of such planets.” says Haghighipour. “More advanced telescopes are needed to identify the biosignatures of these bodies and the physical and compositional characteristics of their atmospheres.”

Further Reading: Super-Earths: A New Class of Planetary Bodies.