Ocean Circulation Might Be the Key to Finding Habitable Exoplanets

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

We’ve found thousands and thousands of exoplanets now. And spacecraft like TESS will likely find thousands and thousands more of them. But most exoplanets are gassy giants, molten hell-holes, or frozen wastes. How can we find those needles-in-the-haystack habitable worlds that may be out there? How can we narrow our search?

Well, first of all, we need to find water. Oceans, preferably, since that’s where life began on Earth. And according to a new study, those oceans need to circulate in particular ways to support life.

Continue reading “Ocean Circulation Might Be the Key to Finding Habitable Exoplanets”

NASA’s Perseverance Rover is Going to Jezero Crater, Which is Looking Better and Better as a Place to Search for Evidence of Past Life on Mars

In 2018, NASA decided that the landing site for its Mars 2020 Perseverance rover would be the Jezero Crater. At the time, NASA said the Jezero Crater was one of the “oldest and most scientifically interesting landscapes Mars has to offer.” That assessment hasn’t changed; in fact it’s gotten stronger.

A new research paper says that the Jezero Crater was formed over time periods long enough to promote both habitability, and the preservation of evidence.

Continue reading “NASA’s Perseverance Rover is Going to Jezero Crater, Which is Looking Better and Better as a Place to Search for Evidence of Past Life on Mars”

Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance

superflare

Earthlings are fortunate. Our planet has a robust magnetic shield. Without out magnetosphere, the Sun’s radiation would’ve probably ended life on Earth before it even got going. And our Sun is rather tame, in stellar terms.

What’s it like for exoplanets orbiting more active stars?

Continue reading “Without a Magnetosphere, Planets Orbiting Flare Stars Don’t Stand a Chance”

Snowball Exoplanets Might Be Better for Life Than We Thought

When astronomers discover a new exoplanet, one of the first considerations is if the planet is in the habitable zone, or outside of it. That label largely depends on whether or not the temperature of the planet allows liquid water. But of course it’s not that simple. A new study suggests that frozen, icy worlds with completely frozen oceans could actually have livable land areas that remain habitable.

The new study was published in the AGU’s Journal of Geophysical Research: Planets. It focuses on how CO2 cycles through a planet and how it affects the planet’s temperature. The title is “Habitable Snowballs: Temperate Land Conditions, Liquid Water, and Implications for CO2 Weathering.”

Continue reading “Snowball Exoplanets Might Be Better for Life Than We Thought”

NASA Promised More Smaller, Earth-size Exoplanets. TESS is Delivering.

When NASA launched TESS (Transiting Exoplanet Survey Satellite) in 2018, it had a specific goal. While its predecessor, the Kepler spacecraft, found thousands of exoplanets, many of them were massive gas giants. TESS was sent into space with a promise: to find smaller planets similar in size to Earth and Neptune, orbiting stable stars without much flaring. Those constraints, astronomers hoped, would identify more exoplanets that are potentially habitable.

With this discovery of three new exoplanets, TESS is fulfilling its promise.

Continue reading “NASA Promised More Smaller, Earth-size Exoplanets. TESS is Delivering.”

Saltwater Similar to the Earth’s Oceans has been Seen on Europa. Another Good Reason Why We Really Need to Visit This Place

Jupiter’s moon Europa is an intriguing world. It’s the smoothest body in the Solar System, and the sixth-largest moon in the Solar System, though it’s the smallest of the four Galilean moons. Most intriguing of all is Europa’s subsurface ocean and the potential for habitability.

Continue reading “Saltwater Similar to the Earth’s Oceans has been Seen on Europa. Another Good Reason Why We Really Need to Visit This Place”

It Looks Like Plate Tectonics Aren’t Required to Support Life

When looking for potentially-habitable extra-solar planets, scientists are somewhat restricted by the fact that we know of only one planet where life exists (i.e. Earth). For this reason, scientists look for planets that are terrestrial (i.e. rocky), orbit within their star’s habitable zones, and show signs of biosignatures such as atmospheric carbon dioxide – which is essential to life as we know it.

This gas, which is the largely result of volcanic activity here on Earth, increases surface heat through the greenhouse effect and cycles between the subsurface and the atmosphere through natural processes. For this reason, scientists have long believed that plate tectonics are essential to habitability. However, according to a new study by a team from Pennsylvania State University, this may not be the case.

The study, titled “Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets“, was recently published in the scientific journal Astrobiology. The study was conducted by Bradford J. Foley and Andrew J. Smye, two assistant professors from the department of geosciences at Pennsylvania State University.

The Earth’s Tectonic Plates. Credit: msnucleus.org

On Earth, volcanism is the result of plate tectonics and occurs where two plates collide. This causes subduction, where one plate is pushed beneath the other and deeper into the subsurface. This subduction changes the dense mantle into buoyant magma, which rises through the crust to the Earth’s surface and creates volcanoes. This process can also aid in carbon cycling by pushing carbon into the mantle.

Plate tectonics and volcanism are believe to have been central to the emergence of life here on Earth, as it ensured that our planet had sufficient heat to maintain liquid water on its surface. To test this theory, Professors Foley and Smye created models to determine how habitable an Earth-like planet would be without the presence of plate tectonics.

These models took into account the thermal evolution, crustal production and CO2 cycling to constrain the habitability of rocky, Earth-sized stagnant lid planets. These are planets where the crust consists of a single, giant spherical plate floating on mantle, rather than in separate pieces. Such planets are thought to be far more common than planets that experience plate tectonics, as no planets beyond Earth have been confirmed to have tectonic plates yet. As Prof. Foley explained in a Penn State News press release:

“Volcanism releases gases into the atmosphere, and then through weathering, carbon dioxide is pulled from the atmosphere and sequestered into surface rocks and sediment. Balancing those two processes keeps carbon dioxide at a certain level in the atmosphere, which is really important for whether the climate stays temperate and suitable for life.”

Map of the Earth showing fault lines (blue) and zones of volcanic activity (red). Credit: zmescience.com

Essentially, their models took into account how much heat a stagnant lid planet’s climate could retain based on the amount of heat and heat-producing elements present when the planet formed (aka. its initial heat budget). On Earth, these elements include uranium which produces thorium and heat when it decays, which then decays to produce potassium and heat.

After running hundreds of simulations, which varied the planet’s size and chemical composition, they found that stagnant lid planets would be able to maintain warm enough temperatures that liquid water could exist on their surfaces for billions of years. In extreme cases, they could sustain life-supporting temperatures for up to 4 billion years, which is almost the age of the Earth.

As Smye indicated, this is due in part to the fact that plate tectonics are not always necessary for volcanic activity:

“You still have volcanism on stagnant lid planets, but it’s much shorter lived than on planets with plate tectonics because there isn’t as much cycling. Volcanoes result in a succession of lava flows, which are buried like layers of a cake over time. Rocks and sediment heat up more the deeper they are buried.”

Image of the Sarychev volcano (in Russia’s Kuril Islands) caught during an early stage of eruption on June 12, 2009. Taken by astronauts aboard the International Space Station. Credit: NASA

The researchers also found that without plate tectonics, stagnant lid planets could still have enough heat and pressure to experience degassing, where carbon dioxide gas can escape from rocks and make its way to the surface. On Earth, Smye said, the same process occurs with water in subduction fault zones. This process increases based on the quantity of heat-producing elements present in the planet. As Foley explained:

“There’s a sweet spot range where a planet is releasing enough carbon dioxide to keep the planet from freezing over, but not so much that the weathering can’t pull carbon dioxide out of the atmosphere and keep the climate temperate.”

According to the researchers’ model, the presence and amount of heat-producing elements were far better indicators for a planet’s potential to sustain life. Based on their simulations, they found that the initial composition or size of a planet is very important for determining whether or not it will become habitable. Or as they put it, the potential habitability of a planet is determined at birth.

By demonstrating that stagnant lid planets could still support life, this study has the potential for greatly extending the range of what scientists consider to be potentially-habitable. When the James Webb Space Telescope (JWST) is deployed in 2021, examining the atmospheres of stagnant lid planets to determine the presence of biosignatures (like CO2) will be a major scientific objective.

Knowing that more of these worlds could sustain life is certainly good news for those who are hoping that we find evidence of extra-terrestrial life in our lifetimes.

Further Reading: PennState, Astrobiology

Was There a Time When the Moon was Habitable?

To put it simply, the Earth’s Moon is a dry, airless place where nothing lives. Aside from concentrations of ice that exist in permanently-shaded craters in the polar regions, the only water on the moon is believed to exist beneath the surface. What little atmosphere there is consists of elements released from the interior (some of which are radioactive) and helium-4 and neon, which are contributed by solar wind.

However, astronomers have theorized that there may have been a time when the Moon might have been inhabitable. According to a new study by an astrophysicist and an Earth and planetary scientist, the Moon may have had two early “windows” for habitability in the past. These took place roughly 4 billion years ago (after the Moon formed) and during the peak in lunar volcanic activity (ca. 3.5 billion years ago).

Continue reading “Was There a Time When the Moon was Habitable?”